

WYMIAROWANIE PRĘTÓW KONSTRUKCJI STALOWYCH WEDŁUG PN-90/B-03200 w konwersacji z programem RM-WIN

INSTRUKCJA UŻYTKOWANIA MODUŁU

BIURO KOMPUTEROWEGO WSPOMAGANIA PROJEKTOWANIA

OPOLE - LIPIEC 2007

Spis treści

WSTĘP	1
PRZEZNACZENIE MODUŁU RM-STAL	3
WYMAGANIA ODNOŚNIE SPRZĘTU ORAZ ŚRODOWISKA PROGRAMOWEGO	5
PODSTAWOWE CECHY UŻYTKOWE MODUŁU RM-STAL	7
INSTALACJA MODUŁU W KOMPUTERZE	9
MERYTORYCZNY ZAKRES WYMIAROWANIA	11
Ogólna koncepcja działania modułu	11
ZASADY UŻYTKOWANIA	
	12
ELEMENTY STEROWANIA OKNA DIALOGOWEGO PN-00/B-03200	
Cechy przekroju	20
Silv przekrojowe	20 21
Stateczność miejscowa	23
Ostabienia otworami	23
Nośność na rozciaganie	24
Długości wyboczeniowe	25
Nośność na ściskanie	29
Zwichrzenie	
Nośność (Stateczność) przy zginaniu	
Nośność przy ściskaniu ze zginaniem	33
Nośność na ścinanie	
Nośność na zginanie ze ścinaniem	35
Środnik pod obciążeniem skupionym	
Środnik w złożonym stanie naprężenia	
Stan graniczny użytkowania	39
Łączniki - smukłości zastępcze	40
Nośność łączników	41
TWORZENIE DOKUMENTACJI WYMIAROWANIA - WYDRUKI	43
Uwagi ogólne	43
Tworzenie dokumentu	43
Bezpośredni sposób tworzenia dokumentu	43
Pośredni sposób tworzenia dokumentu	44
Wydruk tabelaryczny	46
WSKAZÓWKI DOTYCZĄCE WYMIAROWANIA	49
PRĘTY O ZMIENNYM PRZEKROJU (PRĘTY NIEPRYZMATYCZNE)	49
PRZEKROJE O POCHYLONYCH, GŁÓWNYCH OSIACH BEZWŁADNOŚCI	51
PRĘTY O PRZEKROJACH Z KSZTAŁTOWNIKÓW GIĘTYCH	52
ARCHIWIZACJA PARAMETRÓW WYMIAROWANIA	53
PRZYKŁADY	P-1

Wstęp

Niniejsze opracowanie zawiera informacje na temat użytkowania modułu o skrótowej nazwie **RM-STAL** (wersja 3.2x-) opracowanego przez **Biuro Komputerowego Wspomagania Projektowania CADSIS**, stanowiącego integralną część składową pakietu programów do analizy statyczno-wytrzymałościowej i wymiarowania płaskich konstrukcji prętowych.

Informacje podane w niniejszej instrukcji dotyczą:

- przeznaczenia modułu RM-STAL
- wymagań odnośnie sprzętu oraz środowiska programowego
- podstawowych cech użytkowych modułu
- instalacji modułu w komputerze
- merytorycznego zakresu wymiarowania
- zasad użytkowania modułu
- tworzenia dokumentacji zadania
- wskazówek na temat wymiarowania
- przykładów

Większość informacji zawartych w niniejszej instrukcji jest dostępna również poprzez system pomocy dla programu RM-WIN. Sposób korzystanie z tego systemu pomocy jest typowy dla aplikacji środowiska Windows.

Przy opracowaniu instrukcji kierowano się założeniem, że użytkownik posiada wystarczającą wiedzę i doświadczenie w zakresie obliczeń statycznych oraz projektowania konstrukcji stalowych. Dlatego używane w instrukcji słownictwo, oznaczenia i pojęcia dotyczące tej tematyki nie są bliżej wyjaśniane. W przypadku jakichkolwiek wątpliwości z tym związanych, należy sięgnąć do odpowiedniej literatury fachowej.

PRZEZNACZENIE MODUŁU RM-STAL

Moduł RM-STAL jest zintegrowanym składnikiem pakietu programów oznaczonych skrótową nazwą RM, przeznaczonych do analizy statycznowytrzymałościowej oraz wymiarowania płaskich konstrukcji prętowych o dowolnym schemacie statycznym.

Moduł RM-STAL służy do wymiarowania prętów stalowych ściśle wg postanowień oraz zaleceń normy **PN-90/B-03200 - Konstrukcje stalowe. Obliczenia statyczne i projektowanie**, a zakres wymiarowania jest sprecyzowany w dalszej części instrukcji.

Integralność modułu RM-STAL polega na interakcyjnym komunikowaniu się z programem głównym RM-WIN pakietu za pomocą systemowego mechanizmu dynamicznej wymiany danych DDE (ang. Dynamic Data Exchange. Oznacza to również, że nie może on być używany jako autonomiczny program użytkowy, ponieważ dane dotyczące wymiarowania są dostarczane do modułu przez program główny pakietu.

WYMAGANIA ODNOŚNIE SPRZĘTU ORAZ ŚRODOWISKA PROGRAMOWEGO

Dla prawidłowego funkcjonowania modułu RM-STAL oraz wykorzystania jego możliwości użytkownik powinien posiadać:

- Komputer typu IBM-PC/386/486/PENTIUM wyposażony w polskojęzyczny system Windows w wersji 98/NT/2000/XP/Vista32.
- Główny program komputerowy pakietu RM-WIN do analizy statycznej i wytrzymałościowej płaskich konstrukcji prętowych w wersji od 6.0.
- Zaawansowany edytor tekstu dla Windows (najlepiej MS Word) zdolny do importowania tekstu kodowanego w formacie RTF (ang. Rich Text Format).
- Podstawową wiedzę na temat użytkowania programów w środowisku Windows.

PODSTAWOWE CECHY UŻYTKOWE MODUŁU RM-STAL

Moduł RM-STAL nie jest samodzielnym programem komputerowym czyli nie może być uruchamiany bezpośrednio z poziomu systemu Windows. Jest on ładowany do pamięci i uruchamiany przez program główny RM-WIN w momencie uaktywnienia opcji **Wyniki/Stal-PN-90/B-03200** tego programu

Działanie modułu opiera się na mechanizmie dynamicznej wymiany danych (ang. Dynamic Data Exchange - DDE) z programem głównym RM-WIN. Polega to na tym, że program główny RM-WIN przekazuje wszystkie potrzebne dane (pochodzące z analizy statycznej) do wymiarowania pręta modułowi RM-STAL oraz konwersacyjne wykonuje obliczenia statyczne na żądanie modułu, a wynikające z dokonywanych zmian w procesie wymiarowania.

Do podstawowych atutów modułu RM-STAL należy zaliczyć:

- ✓ pełną zgodność z wymaganiami i zaleceniami normy PN-90/B-03200,
- ✓ wymiarowanie dowolnie złożonych przekrojów jednogałęziowych,
- automatyczne wyznaczanie niektórych wielkości normowych wynikających ze stanu sił przekrojowych w pręcie oraz typu jego przekroju,
- ✓ automatyczne wskazywanie najbardziej miarodajnego warunku nośności pręta,
- ✓ wizualne sygnalizowanie przekroczenia warunków nośności pręta,
- ✓ automatyczne wyszukiwanie pręta o najniekorzystniejszym warunku nośności,
- wyznaczanie najniekorzystniejszej kombinacji obciążeń ze względu na nośność wybranego pręta,
- ✓ powielanie danych wymiarowania z jednego pręta do danych innych prętów za pomocą operacji "kopiuj" i "wklej"
- ✓ prostotę posługiwania się jego opcjami i funkcjami,
- ✓ graficzną wizualizację danych i wyników obliczeń,
- ✓ generowanie diagramu stopni wykorzystania nośności prętów konstrukcji,
- całkowitą swobodę tworzenia dokumentacji graficzno-tekstowej dzięki korzystaniu z gotowych arkuszy, opracowanych w konwencji obliczeń ręcznych, automatycznie przesyłanych do zaawansowanych edytorów tekstu (WORD, WORKS, AMIPRO, WORD PERFECT).

Dzięki tym cechom moduł RM-STAL stanowi wyjątkowo sprawne i efektywne narzędzie warsztatu projektanta konstrukcji w zakresie wymiarowania elementów konstrukcji stalowych.

INSTALACJA MODUŁU W KOMPUTERZE

W skład modułu RM-STAL wchodzą następujące pliki:

- plik wykonawczy o nazwie **rm-stal.exe**,
- pliki o rozszerzeniu rtf stanowiące arkusze (szablony) dla poszczególnych normowych *kontekstów wymiarowania* pręta.

Wszystkie pliki modułu są dostarczane na odrębnej dyskietce o nazwie "RM-STAL" kompletu instalacyjnego pakietu RM lub - łącznie z innymi składnikami pakietu - na płycie kompaktowej.

W przypadku, gdy moduł RM-STAL jest dostarczony wraz z programem głównym RM-WIN, to jego instalacji dokonuje program instalujący program główny. Aby zapewnić prawidłowe działanie modułu RM-STAL należy go zainstalować w tym samym katalogu dyskowym, w którym został zainstalowany program główny RM-WIN.

Instalacja modułu dokonywana jest z płyty kompaktowej, a więc wymaga czytnika CD i odbywa się automatycznie po włożeniu płyty do czytnika.

Po pomyślnym zakończeniu instalacji do głównego katalogu pakietu RM-WIN zostanie dołączony plik **rm-stal.exe**, a ponadto utworzony zostanie dodatkowy podkatalog o nazwie **ARKUSZE** zawierający pliki ***.rtf** będące wzorcami źródłowymi dla opcji tworzenia dokumentacji procesu wymiarowania.

Użytkowanie modułu RM-STAL wymaga obecności w porcie komunikacyjnym komputera (LPT lub USB) autoryzowanego przez Biuro "CadSiS" klucza zabezpieczającego przed nieuprawnionym kopiowaniem. W przeciwnym razie na ekranie pojawi się komunikat o braku klucza, a użytkowanie modułu nie będzie możliwe.

MERYTORYCZNY ZAKRES WYMIAROWANIA

Ogólna koncepcja działania modułu

Przedmiotem procesu wymiarowania dokonywanego przy pomocy modułu RM-STAL jest dowolny pręt konstrukcji (zdefiniowanej w programie głównym RM-WIN) o przekroju jednogałęziowym lub wielogałęziowym, o stałych lub liniowo zmiennych wzdłuż osi pręta wymiarach, któremu został przypisany materiał z grupy "stal". Oznacza to, że przedmiotem wymiarowania mogą być pręty o następujących typach przekrojów:

- przekroje składane jednokształtownikowe wszystkich typów możliwych do zdefiniowania w module RM-WIN,
- ✓ przekroje wielogałęziowe zdefiniowane jako przekrój "stalowy wielo",
- przekroje składane wielokształtownikowe zbudowane z wielu kształtowników połączonych ze sobą spawami, z wyjątkiem przekrojów zawierających rurę,
- przekroje wielomateriałowe, jeśli tzw. materiałem podstawowym przekroju jest "stal",
- ✓ przekroje zawierające otwory wprowadzane w trybie definiowania przekroju modułu RM-WIN.

Dla przekrojów składających się z kilku kształtowników wykonanych z różnych gatunków stali, przyjmowany jest jeden rodzaj stali określony przez *materiał podstawowy* przekroju. Podczas wymiarowania prętów stalowych elementy będące otworami oraz te, którym przypisano inny materiał niż stal, są pomijane.

W dalszej części niniejszej instrukcji pod pojęciem przekroju **jednogałęziowego** należy rozmieć, oprócz przekrojów składających się z jednego kształtownika (składane *jednokształtownikowe*}, również przekroje składające się z wielu kształtowników (składane *wielokształtownikowe*), w których wszystkie kształtowniki są ze sobą połączone spawami. Aby *wielokształtownikowe* przekroje składane mogłyby być dopuszczone do wymiarowania, muszą one spełniać następujące warunki:

- Nie mogą zawierać żadnego pojedynczego kształtownika, który nie jest połączony co najmniej jednym spawem z pozostałymi kształtownikami przekroju.
- Nie mogą zawierać kształtowników typu "rura" i "trójkąt" ponieważ dla tego typu kształtowników norma nie precyzuje sposobu określania smukłości ścianek, co jest konieczne dla ustalenia klasy przekroju.
- Poszczególne kształtowniki nie mogą się wzajemnie przenikać powierzchniami.

W przeciwnym razie wymiarowanie pręta nie będzie możliwe, a na ekranie monitora pojawi się komunikat: "Nieodpowiedni przekrój pręta"

Uwaga: Dla osiągnięcia właściwego powiązania poszczególnych kształtowników w jednogałęziowym przekroju *wielokształtownikowym* należy posłużyć funkcjami trybu deklarowania przekroju składanego (opcja: **Przekroje-Lista Przekrojów...-Edytuj...** programu głównego). W tym celu - dla precyzyjnego wzajemnego konfigurowania kształtowników - zaleca się operowanie lokalnym układem odniesienia, znacznikiem punktów konturu kształtownika aktywnego oraz współrzędnymi tego znacznika w układzie lokalnym.

Podstawą wszelkich obliczeń związanych z wymiarowaniem pręta są:

- charakterystyka przekroju pręta określana w programie głównym,
- schemat i geometria pręta oraz jego uwarunkowanie kinematyczne wynikające z jego powiązania z innymi prętami konstrukcji, określane w programie głównym,
- wyniki obliczeń statycznych dla obliczeniowych i charakterystycznych wartości obciążeń dostarczanych przez program główny dla kombinacji aktywnych (włączonych do obliczeń) grup obciążeń,
- równania i wyrażenia wynikające wprost z postanowień i zaleceń normy PN-90/B-03200.

Zasada działania modułu RM-STAL polega na operowaniu tzw. *kontekstami wymiarowania* właściwymi dla konkretnej sytuacji pręta. Każdy z *kontekstów* odnosi się do konkretnego punktu normy, a jego nazwa robocza nawiązuje do tytułu odpowiadającego mu punktu normy. Poniżej wymieniono nazwy wszystkich *kontekstów wymiarowania*, którymi można operować w procesie wymiarowania:

- Cechy przekroju
- Siły przekrojowe
- Stateczność miejscowa
- Osłabienia otworami
- Nośność na rozciąganie
- Długości wyboczeniowe
- Nośność na ściskanie
- Zwichrzenie
- Nośność (Stateczność) przy zginaniu
- Nośność przy ściskaniu ze zginaniem
- Nośność na ścinanie
- Nośność na zginanie ze ścinaniem
- Środnik pod obciążeniem skupionym
- Środnik w złożonym stanie naprężenia
- Stan graniczny użytkowania
- Łączniki smukłości zastępcze
- Nośność łączników

Jest oczywiste, że nie wszystkie *konteksty wymiarowania* są dostępne zawsze, lecz tylko te, które są właściwe dla wybranego pręta, a wynikające z jego stanu pracy statycznej, uwarunkowań kinematycznych i typu przekroju. Lista kontekstów jest ustalana przez moduł automatycznie

Obliczenia wykonywane przez moduł RM-STAL nie obejmują takich elementów konstrukcji jak: połączenia, wzmocnienia przekrojów (żebra), styki i oparcia oraz zagadnień związanych ze zmęczeniem materiału i dynamiki.

ZASADY UŻYTKOWANIA

Użytkowanie modułu RM-STAL do wymiarowania prętów stalowych opiera się na podobnych zasadach jakie obowiązują przy innych opcjach programu głównego RM-WIN. Realizuje on zadania jako jedna z podopcji opcji **Wyniki** programu głównego. W odróżnieniu od innych opcji, moduł RM-STAL współpracuje z programem głównym przy pomocy mechanizmu dynamicznej wymiany danych, co polega na interaktywnym przekazywaniu danych i wykonywaniu poleceń poprzez kanały łączności ustanawiane pomiędzy modułem RM-STAL, a programem głównym RM-WN.

Uruchomienie modułu

Moduł RM-STAL jest uruchamiany przez program główny, a dostępny jest wówczas, gdy możliwe jest wykonanie obliczeń dla zadania, a więc gdy zadanie to jest poprawnie zdefiniowane.

Po zdefiniowaniu schematu statycznego ustroju tzn. jego geometrii, listy przekrojów i obciążeń, można przejść do wymiarowania prętów. W tym celu należy wybrać z menu głównego programu RM-WIN opcję **Wyniki**, a po wyświetleniu listy podopcji, wybrać pozycję **Stal - PN-90/B-03200**.

Jeśli ustrój jest poprawnie zdefiniowany, to program główny wykonuje obliczenia dla aktualnej kombinacji aktywnych grup obciążeń, a następnie tworzy okno robocze (typu MDI) opcji wymiarowania i ustanawia kanały łączności z modułem RM-STAL.

W oknie roboczym opcji wymiarowania **Stal - PN-90/B-03200** rysowany jest schemat ustroju wraz z wykresami aktualnej siły przekrojowej, numerami prętów i węzłów oraz numerów przekrojów przypisanych poszczególnym prętom ustroju.

Wymiarowanie prętów stalowych przy użyciu modułu RM-STAL opiera się na wynikach analizy statycznej przeprowadzonej dla obliczeniowych oraz charakterystycznych wartości obciążeń (*wartości obliczeniowe* - dla wszystkich warunków stanu granicznego nośności, *wartości charakterystyczne* - dla warunków stanu granicznego użytkowania). Oznacza to, że obliczenia przeprowadzane są niezależnie od stanu klauzuli **Wyniki/Obciążenia obliczeniowe**, a wykres sił przekrojowych wyświetlanych w oknie opcji odpowiadają obciążeniom obliczeniowym.

Oprócz standardowych funkcji - dostępnych z poziomu okna roboczego opcji - takich jak:

- wyświetlanie / gaszenie obciążeń,

- wyświetlanie / gaszenie numeracji prętów i węzłów,

- wyświetlanie / gaszenie linii wymiarowych geometrii ustroju,

- wyświetlanie / gaszenie wartości rzędnych charakterystycznych wykresów sił przekrojowych,

- umieszczanie w schowku systemu Windows struktur danych związanych z wymiarowaniem aktywnego pręta, z myślą kopiowania tych danych do do danych innych prętów.
- kopiowanie ze schowka uprzednio w nim umieszczonej struktury danych związanej z wymiarowaniem pręta do danych wymiarowania aktywnego pręta, czyli powielanie danych wymiarowania na pręty o podobnych warunkach i parametrach wymiarowania.
- wyświetlanie diagramu stopnia wykorzystania poszczególnych prętów ustroju. Wywołanie tej funkcji polega na kliknięciu na przypisanemu jej przycisku paska narzędzi lub użyciu klawisza **<Ins>**, co spowoduje uruchomienie procedury generowania diagramu stopni wykorzystania prętów (zadeklarowanych jako stalowe) w aspekcie normowych warunków nośności.

Rys. 1.

W trakcie wykonywania procedury na ekranie monitora wyświetlane jest okno informujące o stopniu zaawansowania obliczeń. W pierwszej kolejności wyznaczane są długości wyboczeniowe poszczególnych prętów, a następnie, dla każdego pręta osobno, sprawdzane są wszystkie - właściwe dla pręta - warunki nośności w celu ustalenia najbardziej niekorzystnej relacji warunku nośności. Czas wykonania niezbędnych obliczeń zależeć będzie od liczby prętów podlegających wymiarowaniu oraz od stanu statycznej pracy poszczególnych prętów (liczba obciążeń na pręcie, rodzaj przekroju, rozkład sił przekrojowych). Po wykonaniu obliczeń na tle okna roboczego opcji wyświetlane jest okno dialogowe **Wykorzystanie przekrojów** zawierające słupkowy diagram stopni wykorzystania prętów (Rys. 1.), składający się z sekcji skupiających pręty o tym samym przekroju. Każda sekcja zawiera - wyskalowane procentowo - pionowe słupki, wypełnione *kolorem elementów wyróżnionych* lub *kolorem wykresów* (określanymi w opcji **Parametry-Kolory**), stopień wypełnienia słupka odpowiada stopniu wykorzystania pręta.

Wypełnienie słupka *kolorem elementów wyróżnionych* oznacza, że siła osiowa działająca w pręcie jest ściskająca, natomiast *kolor wykresów* odpowiada przypadkowi siły rozciągającej. Taka konwencja nie ma tutaj większego znaczenia, a zastała tu przyjęta dla zachowania zgodności zasad przyjętych dla diagramu stopnia wykorzystania prętów generowanego w opcji **Wyniki-Naprężenia**, a bazującym na klasycznym (naprężeniowym) warunku nośności pręta.

Sekcje diagramu są ułożone poziomo i sekwencyjnie według numerów przekrojów z *listy przekrojów zadania*, a przy większej liczbie przekrojów lub prętów mogą być przewijane w oknie, w którym są wyświetlane. Do tego celu służy poziomy pasek (belka) przewijania, którego elementy sterujące nie wymagają omówienia. Oprócz tego, przesuwania sekcji diagramu można dokonywać za pomocą klawiszy-strzałek (ewentualnie w kombinacji z klawiszem **<Ctrl>**) oraz **<Home>**, **<End>**. **<PgUp>**, **<PgDn>**.

Liczby umieszczone u dołu słupka diagramu są numerami prętów, którym one odpowiadają, natomiast górne liczby wyrażają stopień wykorzystania nośności pręta w procentach. Dla polepszenia czytelności diagramu słupki zostały wyposażone w skalę, której jednostką jest odcinek odpowiadający 25% nośności pręta.

Należy mieć na uwadze fakt, że jeśli użytkownik nie określił wcześniej parametrów wymiarowania (materiał, użebrowania, długości wyboczeniowe, wymiary łączników dla przekrojów wielogałęziowych i itd.) dla poszczególnych prętów, to do obliczeń przyjmowane są ich wartości domyślne. A więc w szczególnych sytuacjach projektowania (np. w przypadku prętów o przekrojach wielogałęziowych) wskazane jest wcześniej wyspecyfikowanie niektórych parametrów wymiarowania (np. wymiary łączników) zanim zostanie użyta funkcja wyświetlana diagramu stopnia wykorzystania nośności prętów.

Lista **Pręty** zawiera wykaz prętów stalowych ustroju z podaniem decydującego o nośności pręta warunku normowego. W przypadku, gdy nośności prętów wyznaczone zostały na podstawie obwiedni wielkości statycznych pręta, dodatkowo lista zawiera specyfikację najniekorzystniejszej ze względu na nośność pręta kombinacji obciążeń. Wówczas podwójne kliknięcie lewym przyciskiem myszy na wybranym elemencie listy powoduje uaktywnienie tych grup obciążeń, które stanowią najniekorzystniejszy ich układ dla wybranego pręta. Przełącznik **Kombinatoryka** decyduje o sposobie wyznaczanie nośności prętów ustroju. Domyślnie przełącznik ten jest wyłączony i oznacza to, że nośności prętów wyznaczane są dla wielkości statycznych pochodzących od obciążeń aktywnych grup, które wyświetlone są w oknie statusu programu. Przełącznik ten jest dostępny tylko wówczas, gdy dla danego zadania wyliczona została kombinatoryka obciążeń. Włączenie przełącznika **Kombinatoryka** powoduje wyznaczenie nośności poszczególnych prętów ustroju dla najniekorzystniejszej dla danego pręta kombinacji obciążeń.

Wyniki obliczeń, związane z diagramem stopni wykorzystania nośności prętów, są pamiętane do momentu zamknięcia okna roboczego opcji wymiarowania. Każda zmiana danych odnośnie geometrii ustroju, przekrojów i obciążenia powoduje, że wyniki muszą być zaktualizowane. Jeśli natomiast zmiany dokonywane w module RM-STAL dotyczą wyłącznie parametrów wymiarowania danego pręta, to obliczenia ograniczają się do tego pręta, którego zmiany dotyczą.

Dla udokumentowania stopni wykorzystania nośności prętów ustroju można posłużyć się opcją wydruku okna dialogowego, która jest dostępna poprzez menu systemowe tego okna (przycisk umieszczony w lewym, górnym rogu okna) lub w opcji **Pliki/Drukuj** programu RM-Win.

- automatyczne wyszukiwanie pręta, którego stopień wykorzystania jest największy spośród wszystkich prętów podlegających wymiarowaniu w module RM-STAL. Wywołanie tej funkcji polega na kliknięciu na przypisanemu jej przycisku paska narzędzi lub użyciu kombinacji klawiszy <**Ctrl**>+<**Enter**>, co spowoduje wywołanie procedury wyszukiwania pręta, którego stopień wykorzystania jest największy.

Procedura wyszukiwania jest realizowana w kontekście dodatkowych warunków wyszukiwania, a określonych w klauzuli **Wyszukiwanie dla prętów** w oknie dialogowym **Parametry opcji**, które jest udostępniane poprzez menu aplikacji (**Parametry-Parametry opcji**) lub bezpośrednio - klawisz <**F10**>.

Efektem końcowym procedury wyszukiwania jest wywołanie modułu RM-STAL dla ustalonego pręta i wskazanie - w *oknie kontekstów wymiarowania - kontekstu wymiarowania*, który decyduje o stopniu wykorzystania nośności pręta.

Proces wymiarowania dotyczy zawsze tylko jednego pręta, a konkretnie tego, który jest wyróżniony kolorem wyróżnienia. Podwójne kliknięcie lewym przyciskiem myszy na pręcie wyróżnionym lub użycie klawisza **<Enter>** spowoduje uruchomienie modułu RM-STAL i pojawienie się okna dialogowego wymiarowania (Rys.2.).

Pomyślne wykonanie tej operacji jest możliwe tylko wówczas, gdy do pręta przydzielony jest dozwolony przekrój, a przypisany mu materiał jest rodzaju "stal". W przeciwnym razie uruchomienie modułu nie będzie możliwe.

ZASADY UŻYTKOWANIA

Rys. 2.

Elementy sterowania okna dialogowego PN-90/B-03200

Okno dialogu modułu RM-STAL zawiera następujące elementy służące do sterowania funkcjami procesu wymiarowania pręta:

Okno przekroju pręta opatrzone u góry nazwą przekroju (nadaną podczas jego edycji w opcji **Przekroje** programu RM-WIN), a zawierające wyskalowany rysunek przekroju, który został przypisany prętowi w opcji **Geometria-Pręty**. Jeśli pręt został wcześniej zadeklarowany jako o przekroju zmiennym wzdłuż swojej osi, to w oknie rysowane są oba przekroje (początkowy i końcowy) oraz przekrój wynikający z położenia znacznika przekroju w *oknie schematu pręta*. Okno przekroju pręta, po jego uaktywnieniu (poprzez kliknięcie przyciskiem myszy w obszarze okna lub sekwencyjnie przy pomocy klawisza **<Tab>**) może odbierać następujące polecenia:

• Zmiana skali rysunku (tzw. zoom), czyli

Powiększenie, co polega na

- użyciu klawisza **<F9>** pojawi się w oknie kursor-lupa,
- zaznaczeniu lewego-górnego rogu obszaru powiększania (kliknięcie przyciskiem myszy) pojawi się prostokąt zoom'owania,
- zaznaczeniu prawego-dolnego rogu obszaru powiększania (kliknięcie przyciskiem myszy) - wybrany obszar zostanie powiększony do rozmiarów okna przekroju.

<u>Dwukrotne pomniejszenie</u>, co polega na użyciu kombinacji klawiszy **<Shift>+<F9>**.

- <u>Centrowanie</u>, czyli dostosowanie skali rysunku przekroju tak, aby w całości mieścił się w oknie, co polega na użyciu kombinacji klawiszy **Ctrl>+<F9>**.
- Zmiana rozmiarów przekroju, np. podyktowana warunkami wymiarowania. W tym celu należy dwukrotnie kliknąć przyciskiem myszy lub w stanie aktywności okna użyć klawisza **<Enter>**. W zależności od rodzaju przekroju pojawi się okno dialogowe, w którym można dokonać zmiany nominału kształtownika lub jego wymiarów. Dla prętów o zmiennym przekroju jako pierwszy pojawia się dialog dotyczący przekroju na początku pręta (węzeł *A*), a następnie dialog dotyczący przekroju na końcu pręta (węzeł *B*).

<u>Okno schematu pręta</u> zawierające rysunek schematu pręta wraz z aktualnym rozkładem sił przekrojowych. Dodatkowo na rysunku pręta wyświetlany jest znacznik położenia przekroju oraz linie wymiarowe ułatwiające odczytywanie liczbowych wartości odległości znacznika od końców pręta. Większość *kontekstów wymiarowania* ma charakter lokalny, co oznacza, że wyświetlane w oknie kontekstu wielkości odnoszą się do konkretnego przekroju. pręta, wskazywanego przez znacznik. Okno schematu pręta, po jego uaktywnieniu (poprzez kliknięcie przyciskiem myszy w obszarze okna lub sekwencyjnie przy pomocy klawisza **<Tab>**) może odbierać następujące polecenia:

• Zmiana skali rysunku (tzw. zoom), czyli

Powiększenie, co polega na

- użyciu klawisza **<F9>** pojawi się w oknie kursor-lupa,
- zaznaczeniu lewego-górnego rogu obszaru powiększania (kliknięcie przyciskiem myszy) - pojawi się prostokąt zoom'owania,
- zaznaczeniu prawego-dolnego rogu obszaru powiększania (kliknięcie przyciskiem myszy) - wybrany obszar zostanie powiększony do rozmiarów okna schematu.

<u>Dwukrotne pomniejszenie</u>, co polega na użyciu kombinacji klawiszy **<Shift>+<F9>**.

<u>Centrowanie</u>, czyli dostosowanie skali rysunku przekroju tak, aby w całości mieścił się w oknie, co polega na użyciu kombinacji klawiszy **<Ctrl>+<F9>**.

- Zmiana położenia znacznika przekroju, co polega na:
 - uchwyceniu znacznika kursorem myszy przez zbliżenie kursora myszy do znacznika przekroju i wciśnięcie lewego przycisku,

- nasunięcie znacznika ruchem myszy na zamierzoną pozycję na osi pręta,

lub przy pomocy klawiszy-strzałek nasunąć znacznik przekroju na zamierzoną pozycję na osi pręta, ewentualnie dostosowując wartość skoku znacznika w polu edycyjnym *Skok*. <u>Okno kontekstów wymiarowania</u>, w którym wyświetlane są informacje związane z aktualnym *kontekstem wymiarowania*. Zawartość tego okna zmienia się wraz ze zmianą *kontekstu*, co może być dokonywane za pośrednictwem *Listy kontekstów wymiarowania* lub przycisków **Wstecz** i **Dalej**.

<u>Lista materiałów</u> (Materiał) zawiera normowe symbole gatunków stali konstrukcyjnej, które są pogrupowane według ich cech mechanicznych. Lista służy do przydzielenia gatunku stali do pręta, co jest konieczne wówczas, gdy nazwa przydzielonego wcześniej - w opcji **Przekroje** programu głównego - materiału z biblioteki materiałów nie pokrywa się z nazwą żadnego normowego gatunku stali z listy.

<u>Lista kontekstów wymiarowania</u> zawiera nazwy kontekstów wymiarowania i jest ściśle związana z **Oknem kontekstów wymiarowania**. Liczba kontekstów oraz ich merytoryczny skład zależy od stanu sił przekrojowych w pręcie i typu przekroju

<u>*Przyciski*</u> Wstecz i Dalej służą do sekwencyjnego przełączania pomiędzy poszczególnymi *kontekstami wymiarowania*.

<u>Przycisk</u> Wyszukaj służy do automatycznego wyznaczenia przekroju pręta, dla którego warunek lub wielkość, stowarzyszone z aktualnym *kontekstem wymiarowania*, są najbardziej niekorzystne z punktu widzenia wymagań normowych. Jego użycie powoduje wykonanie procedury wyszukiwania, której efektem końcowym jest wskazanie przekroju (ustawienie znacznika przekroju) oraz uaktualnienie pól liczbowych lub relacji zawartych w *Oknie kontekstów wymiarowania*. Dla tzw. *kontekstów wymiarowania* o charakterze globalnym przycisk ten jest nieaktywny, tzn. wielkość lub warunek stowarzyszony z tym kontekstem nie ma związku z położeniem znacznika przekroju.

Obok przycisku **Wyszukaj** umieszczony jest przełącznik, którego włączenie powoduje, że przy zmianie kontekstu wymiarowania - dokonywanej przy pomocy przycisków **«Wstecz** i **Dalej»** - przejściu do innego kontekstu wymiarowania towarzyszy automatyczne wyszukanie przekroju pręta (z jednoczesnym ustawieniem *znacznika przekroju*), w którym warunek związany z nowym kontekstem jest najniekorzystniejszy.

<u>Przycisk</u> Znajdź uruchamia procedurę ustalenia kontekstu wymiarowania, dla którego stowarzyszony warunek normowy jest najniekorzystniejszy. Efektem działania tej procedury jest wyświetlenie w Oknie kontekstów wymiarowania wyszukanego kontekstu oraz ewentualne ustawienie znacznika przekroju (jeśli wyszukany kontekst ma charakter lokalny).

<u>*Przycisk*</u> (**x**:/**y**:/**s**:) służy do wybierania sposobu rysowania linii wymiarowych określających położenie znacznika przekroju, a mianowicie: **x**: - poziomo, **y**: - pionowo **s**: - równolegle do osi pręta. Możliwość ta - z oczywistych względów - dotyczy prętów nachylonych ukośnie. Z przyciskiem tym stowarzyszone jest pole edycyjne, które zawiera odległość znacznika przekroju od węzła początkowego (*A*) pręta i odległość ta może być zadana (wpisana) bezpośrednio, każda zmiana tej wartości powoduje uaktualnienie położenia znacznika przekroju.

INSTRUKCJA UŻYTKOWANIA MODUŁU

<u>Pola edycyjne</u>

- **a:** zawierające odległość między ewentualnymi usztywnieniami poprzecznymi ścianek przekroju pręta (żebrami poprzecznymi). Domyślnie wielkość ta jest równa długości pręta, co oznacza, że usztywnień (żeber) nie ma,
- b1: udostępniane wyłącznie dla pręta o przekroju zawierającym dwuteownik spawany, a określające położenie usztywnień podłużnych środnika (żeber podłużnych) względem pasa ściskanego przekroju dwuteowego. Wymiar b1 jest mierzony od dolnej krawędzi pasa górnego przekroju.

Cecny przekroj	JU
----------------	----

Odniesienie:	Nie związany z normą.
Komentarz:	Ten <i>kontekst wymiarowania</i> obejmuje wielkości ściśle związane z charakterystyką geometryczną i wytrzyma- łościową oraz materiałową przekroju pręta, przeka- zywaną do modułu RM-STAL przez program główny RM-WIN w ramach konwersacji i ma charakter wyłą- cznie informacyjny. W przypadku pręta o przekroju zmiennym wzdłuż osi, wyświetlana w <i>Oknie kontekstów</i> charakterystyka odpo- wiada przekrojowi wynikającemu z położenia znacznika przekroju <i>Okna schematu pręta</i> . W oznaczeniu głównych osi centralnych przekroju <i>x-X</i> ,
	y- <i>Y</i> obowiązuje zasada, że osią <i>x</i> - <i>X</i> jest zawsze os więk- szego momentu bezwładności.
Zakres:	Wszystkie przypadki.
Elementy sterowania:	Brak.
Funkcja Wyszukaj:	Nieaktywna.
Uwagi:	Przy definiowaniu oraz ewentualnych zmianach wymia- rów przekroju pręta należy unikać deklarowania zbyt smukłych ścianek, tzn. takich, dla których smukłość względna $\overline{\lambda}_p > 3,0$, a więc wykraczająca poza zakres stosowalności krzywych normowych dla współczynni- ków niestateczności miejscowej. W przypadku gdy to ograniczenie nie jest spełnione - na ekranie monitora bę- dzie pojawiał się permanentnie stosowny komunikat ostrzegawczy, a wyniki obliczeń dla poszczególnych kontekstów wymiarowania mogą być niewiarygodne.

CADSIS	ZASADY UŻYTKOWANIA	RM-STAL
Siły przekrojowe		
Odniesienie:	Nie związany z normą.	
Komentarz:	Obejmuje informacje dotyczące stanu st pręta, czyli rozkładu sił przekrojowych przekazywanych przez program głów w ramach konwersacji oraz wartości ekstr rężeń normalnych w obrębie aktualnego p czanych przez moduł RM-STAL na poda siły osiowej i momentów zginających. Wy tości wyznaczane są zawsze dla obciążeń o	tatycznej pracy wzdłuż pręta, vny RM-WIN remalnych nap- przekroju, obli- stawie wartości yświetlane war- bliczeniowych.
	Umożliwia również ustalenie najniekorzy binacji grup obciążeń działających w ustroju.	stniejszej kom- v płaszczyźnie
	Oprócz tego, istnieje możliwość uwzgle trzennej pracy pręta poprzez podania wa złowych momentów zginających oraz ew ciążenia równomiernie rozłożonego w pła stopadłej do płaszczyzny ustroju.	ędnienia przes- artości przywę- entualnego ob- aszczyźnie pro-
Zakres:	Wszystkie przypadki.	
Elementy sterowan	 ia: Przycisk Wyznacz niekorzystne umożl najniekorzystniejszej ze względu na nośn binacji grup obciążeń działających w ustroju. Przycisk ten jest dostępny tylko dla danego zadania wyliczona została kom ciążeń. Najniekorzystniejsza kombinacja pręta ustalana jest spośród kombinacji o pujące wielkości dla pręta: max{ σ }, max max{ Q }, max{N}, min{N}, max{f/L} max{ U^Bx } (f/L - deformacja pręta; U^A mieszczenia poziome węzłów). Użycie powoduje ustawienie aktywnych grup ob stawie kombinacji najniekorzystniejszej. znacz niekorzystne jest aktywny tylk wcześniej została wykonane obliczenia dl ki grup obciążeń (włączona klauzula Kon opcji Wyniki. 	liwia ustalenie ość pręta kom- płaszczyźnie wówczas, gdy ibinatoryka ob- ι obciążeń dla lających nastę- {M}, min{M}, }, max{ U ^A x }, x, U ^B x - prze- tego przycisku ciążeń na pod- Przycisk Wy - to wtedy, gdy a kombinatoryka w
	Pola edycyjne określające rozkład sił w płaszczyźnie prostopadłej do płaszc a mianowicie: Ma: - do wpisania wartości momentu	przekrojowych zyzny ustroju
	w płaszczyźnie prostopadłej do płas ju, w węźle A pręta.	szczyzny ustro-

- Mb: do wpisania wartości momentu zginającego, w płaszczyźnie prostopadłej do płaszczyzny ustroju, w węźle *B* pręta.
- q: wartość obciążenia równomiernie rozłożonego na całej długości pręta, działającego w kierunku prostopadłym do płaszczyzny ustroju.
- γ_f: częściowy współczynnik bezpieczeństwa dla obciążeń.

Wielkości **Ma**, **Mb**, **q** pochodzą od obciążeń charakterystycznych.

Należy tu przypomnieć zasadę, jaka obowiązuje przy określaniu orientacji przekroju przypisanego prętowi, a mianowicie, że dolne włókna przekroju widzianego w *Oknie przekroju* są zawsze skojarzone z wyróżnioną stroną pręta (linia przerywana) w oknie schematu pręta, a przekrój jest przekrojem o tzw. normalnej dodatniej, tzn. widziany z pozycji węzła *B* w kierunku węzła *A*.

Znakowanie momentów **Ma** i **Mb** wyjaśnia Rys.3., natomiast dodatnia wartość obciążenia **q** oznacza, że działa ono od prawej strony przekroju widzianego w *Oknie przekroju*.

Funkcja Wyszukaj: Wyszukuje przekrój o największej, bezwzględnie wartości naprężeń normalnych wyznaczanych klasycznie na podstawie wartości siły osiowej i momentów zginających w obu kierunkach. Efektem działania tej funkcji jest ustawienie znacznika przekroju w *Oknie schematu pręta* na przekroju wyszukanym oraz wyświetlenie w grupie Naprężenia *Okna kontekstów wymiarowania* wartości ekstremalnych naprężeń normalnych σ_c i σ_t .

Stateczność miejscowa	
Odniesienie:	Zagadnienia związane z punktem 4.2. normy.
Komentarz:	 Dotyczy określenia współczynników redukcji nośności przekroju klasy 4. W <i>Oknie kontekstów wymiarowania</i> wyświetlane są wartości dotyczące: warunku (9) stateczności ścianki w jednoosiowym stanie naprężenia.
	• cech przekroju w stanie nadkrytycznym - A_o , W_{ecx} , W_{ecy} ,
	 wartości dodatkowych momentów zginających, wyni- kających z przesunięcia środka ciężkości przekroju współpracującego względem środka ciężkości przek- roju nominalnego.
	• współczynników redukcji nośności: ψ_o - na ściskanie, ψ_x , ψ_y - na zginanie w obu kierunkach.
Zakres:	Tylko pręty o jednogałęziowym przekroju klasy 4.
Elementy sterowania	 <u>Grupa przełączników wyboru</u> do deklarowania trybu dla jakiego stanu pracy przekroju mają być wyznaczone współczynniki redukcji nośności: krytycznym,
	 nadkrytycznym,
	nadkrytycznym ograniczonym.
	Dla przekrojów, w których występują wyłącznie ścianki jednostronnie umocowane aktywny jest tylko przełącznik stowarzyszony z wymiarowaniem w stanie krytycznym (np. teowniki, kątowniki).
Funkcja Wyszukaj:	Wyszukuje przekrój pręta, w którym relacja warunku (9) jest najniekorzystniejsza.
Osłabienia otworan	ni
Odniesienie:	Punkt 4.1.2 Osłabienia elementu otworami na łączniki
Komentarz:	Obejmuje aspekt wymiarowania związany z ewentualnymi osłabieniami przekroju otworami na łączniki, w powiąza- niu z warunkiem dla złożonego stanu naprężenia (Tabela 5 - poz. 4). Oprócz elementów sterowania, <i>Okno kontek- stów wymiarowania</i> zawiera następujące informacje: <i>A</i> pole powierzchni przekroju brutto, <i>y</i> _{oc} wskaźnik osłabienia przekroju przy ściskaniu,

INSTRUKCJA UŻYTKOWANIA MODUŁU

_	
	σ_e wartość maksymalnego naprężenia normalnego w przekroju w powiązaniu z warunkami nośności zawartymi w Tabeli 5 (poz. 1 i 2), A_v pola powierzchni czynnego przekroju brutto na ści-
	nanie odpowiednio w kierunkach X i Y, $A_{\nu o}$ pola powierzchni osłabień otworami przekroju
	brutto na scinanie odpowiednio w kierunkach X i Y, ψ_{ov} wskaźniki osłabienia przekroju na ścinanie odpo- wiednio w kierunkach X i Y,
	τ_e wartości naprężeń stycznych z uwzględnieniem osłabień odpowiednio w kierunkach X i Y oraz osta- teczny warunek nośności na ścinanie (Tabela 5 - poz. 3)
	Relację warunku nosnosci przekroju osłabionego w zło- żonym stanie naprężenia (Tabela 5 - poz.4).
Zakres:	Wszystkie przypadki.
Elementy sterowania	: Elementami sterowania są:
	<u>Przełącznik</u> Otwory powiększ. - dla wyboru opcji zasto- sowania wskaźnika osłabienia przekroju ψ_{oc} - w przypadku występowania otworów powiększonych w strefie ściskanej elementu.
	<u>Pole edycyjne</u> Położenie: - pozwala określić miejsca występowania osłabień przekroju. Miejsca te określa się w postaci ciągu współrzędnych oddzielonych odstępami liczonych od węzła "A" wzdłuż osi pręta. Program do- myślnie przyjmuje, że osłabienia występują na początku i na końcu pręta.
	<u>Lista</u> Ścianki: - zawiera listę ścianek przekroju, na których mogą występować otwory. W celu zadania osłabienia występującego na wybranej ściance należy podwójnie kliknąć na związanym z tą ścianką elemencie listy i wprowadzić pole powierzchni, w centymetrach, otworów przypadających na daną ściankę.
Funkcja Wyszukaj:	Wyszukuje przekrój pręta, w którym relacja warunku (Tabela 5 - poz.4) jest najniekorzystniejsza. Przy stoso- waniu tej funkcji należy mieć na uwadze fakt, że funkcja uwzględnia osłabienia otworami tylko w przekrojach określonych w polu edycyjnym Położenie . W pozosta- łych przekrojach osłabienia nie są uwzględniane.

Nośność na rozciąganie	
Odniesienie:	Punkt 4.3 Elementy rozciągane.

24

INSTRUKCJA UŻYTKOWANIA MODUŁU

CadSIS	ZASADY UŻYTKOWANIA	RM-STAL
Komentarz:	Odnosi się do wszystkich prętów (niezależn wytrzymałościowego, a więc również w związku z punktem 4.4.1b. normy. Przy warunku nośności pręta na rozciąganie uw deklaracje dokonane w <i>kontekście osłabie</i> Przy czym dla prętów nierozciąganych osła mi są brane pod uwagę tylko wówczas, gdy osłabienia otworami został włączony prze ry powiększ. Okno kontekstów wymiarowa A pole przekroju pręta brutto, A_{ψ} sprowadzone pole przekroju, N wartość siły osiowej w działającej w pr N_{Rt} nośność pręta na rozciąganie. Relację warunku (31) lub (32).	ie od ich stanu ściskanych) y sprawdzaniu vzględniane są <i>mia otworami</i> bienia otwora- y w kontekście łącznik Otwo- unia zawiera:
Zakres:	Wszystkie przypadki.	
Elementy sterowania	: Elementami sterowania są:	
	<u>Przełącznik</u> Połączenie mimośrod. - dla połączenia mimośrodowego pręta.	wyboru opcji
	<u>Przełącznik</u> Jeden łącznik - dla wyboru w łączników (jeden lub więcej) - pod warunk przełącznika Połączenie mimośrod. .	variantu liczby iem włączenia
	Oba przełączniki dotyczą połączeń mimoś ko przekrojów typu: ceownik, teownik (p.4.3.1b. normy).	rodowych tyl- lub kątownik
Funkcja Wyszukaj:	Wyszukuje przekrój pręta, w którym rel (31) lub (32) jest najniekorzystniejsza.	lacja warunku

Długości	wyboczeniowe

Odniesienie:	Punkt 4.4 Elementy ściskane, Rozdz. 2 - Załącznik 1
Komentarz:	Służy do określania współczynników długości wybocze- niowych pręta w związku z koniecznością wyznaczania smukłości względnej pręta dla wyboczenia giętnego oraz dla wyboczenia skrętnego (p. 4.4.3. normy). Współ- czynniki długości wyboczeniowych dla wyboczenia gięt- nego pręta są wyznaczane na podstawie tzw. stopni po- datności węzłów na obrót oraz na przechył pręta (roz- działy 1. i 2. Załącznika 1 normy). Możliwe są trzy sposoby określania stopni podatności węzłów dla wyboczenia w płaszczyźnie układu (κ_a - wę- zła <i>A</i> , κ_b - węzła <i>B</i> , κ_v - na przechył pręta)

- Normowy ściśle wg zaleceń zawartych w rozdziale 2 Załącznika 1 normy - zalecany w przypadkach, gdy uwarunkowania pręta w pełni odpowiadają przypadkom opisanym w normie.
- 2. Mechaniczny zgodny z klasyczną teorią stateczności pręta przy wyboczeniu giętnym. W tym przypadku współczynniki podatności węzłów wyznaczane są na podstawie rzeczywistych sztywności węzłów pręta w sposób opisany instrukcji obsługi modułu rm-win. Metoda ta jest zalecana w sytuacji, gdy uwarun-kowania pręta wykraczają poza przypadki opisane w normie lub gdy w szczególnej sytuacji zalecenia normy są zbyt rygorystyczne, a rzeczywista forma utraty stateczności układu nie odpowiada przyjętej w normie.
- 3. *Ręczny* polegający na bezpośrednim zadaniu przez użytkownika wartości stopni podatności pręta, np. obliczonych we własnym zakresie.

Dla *normowego* sposobu wyznaczania współczynników podatności układu na obrót węzłów istotny jest zarówno sposób połączenia prętów przylegających jaki i ich warunki na przeciwległych (dalekich) końcach. Ważne jest, aby schemat pręta przylegającego odpowiadał rzeczywistym warunkom kinematycznym na przeciwległym końcu. Jeśli np. przylegający pręt jest sztywno połączony z wymiarowanym prętem, a na przeciwległym końcu jest podparty przegubowo, to jego schemat powinien być sztywno-przegubowy (Rys.4.). Odpowiedniego deklarowania właściwych schematów statycznych prętów należy dokonać w opcji **Geometria-Pręty** programu głównego RM-WIN.

INSTRUKCJA UŻYTKOWANIA MODUŁU

Sprawdzenie czy układ jest *przesuwny* ze względu na wyboczenie analizowanego pręta odbywa się poprzez wyznaczenie podatności układu na przesuw w kierunku prostopadłym do pręta. Następnie przyjmowana jest podatności $\kappa_v = 1$ dla układów przesuwnych i $\kappa_v = 0$ - dla nieprzesuwnych.

Powyższe uwagi nie dotyczą wyznaczania współczynników podatności węzłów w sposób *mechaniczny*.

Dla określenia współczynnika długości wyboczeniowej pręta przy jego wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny ustroju, wartości stopni podatności muszą być zadane przez użytkownika, a domyślnie są one inicjowane przez program jako równe odpowiednio $\kappa_a = 1$, $\kappa_b = 1$, $\kappa_v = 0$, co odpowiada schematowi pręta dwustronnie przegubowego bez możliwości przechyłu.

Wartości stopni podatności muszą się zawierać w granicach od 0 do 1, co wynika z ich definicji, a mianowicie:

 $\kappa = \frac{K_c}{K_c + K_o}$ - dla stopni podatności węzłów, gdzie

 $K_c = (\text{moment bezwładności przekroju / długość obliczeniowa pręta})$ jest sztywnością pręta, a K_o jest sztywnością zamocowania pręta na obrót węzła oraz

 $\kappa = \frac{K_c}{K_c + K_v}$ - dla stopnia podatności na przesuw, *gdzie* K_v

jest sztywnością zamocowania pręta na przesuw.

Jeśli pręt nie ma oporu na obrót w węźle (przegub), a więc $K_o=0$ lub na przesuw (obustronnie przegubowy), a więc $K_v=0$, to wartości stopni podatności są równe 1, natomiast gdy pręt jest całkowicie zamocowany w węźle (sztywne zamocowanie), a więc $K_o=\infty$ lub nieprzesuwny (węzły pręta nieprzesuwne), a więc $K_v=\infty$), to stopnie podatności są równe 0.

Na podstawie stopni podatności węzłów wyznaczany jest współczynnik długości wyboczeniowej μ jako rozwiązanie zagadnienia wyboczenia pręta podpartego sprężyście o zadanych wartościach podatności sprężyn. Metoda ta jest w pełni zgodna z diagramami zawartymi na Rys. Z1-3 normy dla $\kappa_{\mu}=1$ i $\kappa_{\mu}=0$.

Współczynnik długości wyboczeniowej oraz obliczeniowa długość pręta dla wyboczenia skrętnego nie są przez moduł RM-STAL wyznaczane (ze względu na płaskość zagadnienia, czyli bez uwzględnienia skręcania), a więc muszą być bezpośrednio podane przez użytkownika na

28

	podstawie odrębnej analizy. Domyślnie współczynnik długości wyboczeniowej dla wyboczenia skrętnego jest równy 1 , a długość obliczeniowa w tym względzie jest równa długości teoretycznej pręta, jak dla wyboczenia giętnego (czyli równa odległości między węzłami pręta).
	Długość obliczeniowa pręta L_o może być w tym kontek- ście zmieniona stosownie do rzeczywistych warunków podparcia pręta i to niezależnie w obu kierunkach. Dzię- ki temu można np. dokonać zmniejszenia długości obli- czeniowej pręta biorąc pod uwagę odległość w świetle podparć, połączeń lub dodatkowych stężeń albo zwięk- szenia długości pręta np. przy braku stężeń pasa górnego kratownicy w kierunku prostopadłym do płaszczyzny ustroju.
	W oknie kontekstów wymiarowania wyświetlane są:
	κ_a - stopień podatności pręta na obrót węzła A,
	κ_b - stopień podatności pręta na obrót węzła B ,
	κ_{ν} - stopień podatności pręta na przesuw,
	L_o - długość obliczeniowa pręta,
	μ - współczynnik długości wyboczeniowej,
	dla wyboczenia giętnego pręta odpowiednio w płasz- czyźnie ustroju i płaszczyźnie prostopadłej oraz
	μ_{ω} - współczynnik długości wyboczeniowej dla wybo- czenia skrętnego lub giętnoskrętnego (zwichrze- nia),
	L_{ω} - długość obliczeniowa pręta ze względu na wybo- czenie skrętne lub giętnoskrętne (zwichrzenie).
Zakres:	Pręty, w których występuje ściskająca siła osiowa.
Elementy sterowania:	Elementami sterowania są:
	Pary edycyjne pól liczbowych:
	κa: - stopień podatności pręta na obrót węzła A ,
	kb: - stopień podatności pręta na obrót węzła <i>B</i> ,
	kv: - stopień podatności pręta na przesuw,
	Lo: - długość obliczeniowa pręta,
	dla wyboczenia giętnego pręta odpowiednio w płasz- czyźnie ustroju i płaszczyźnie prostopadłej.
	Edycyjne pole liczbowe:
	μω: - współczynnik długości wyboczeniowej dla wy- boczenia skrętnego lub giętnoskrętnego (zwi- chrzenia),
	INSTRUKCJA UŻYTKOWANIA MODUŁU

adsis	ZASADY UŻ	YTKOWANIA	RM-STAL
	Lo: - długo bocze nie).	ść obliczeniowa pręta ze wzg nie skrętne lub giętnoskrętno	ględu na wy- e (zwichrze-
	<u>Przełączniki w</u> wg PN	yboru: - dla obliczeń stopni pod złów dla wyboczenia pr czyźnie układu ściśle w zaleceń normy PN (Załącznik 1).	datności wę- ręta w płasz- g wymagań i -90/B-03200
	wg mechar	niki - dla obliczeń stopni pod dług rzeczywistych szty złów pręta,	latności we- ywności wę-
	zadane	 współczynnik długośc niowej wyznaczany jest nych przez użytkownik datności węzłów pręta. 	i wybocze- dla określo- a stopni po-
Funkcja Wyszukaj:	Nieaktywna.		
Uwagi:	Przy zmianie wymiarów lub nominału katalogowego przekroju oraz przy zmianie schematu statycznego ukła- du aktualizowane są wartości stopni podatności pręta dla wyboczenie w płaszczyźnie ustroju wyznaczone w spo- sób <i>normowy</i> lub <i>mechaniczny</i> . Przy <i>mechanicznym</i> sposobie wyznaczania tych podatności dodatkowo aktu- alizacja następuje przy każdej zmianie obciążeń ustroju.		

Powyższe uwagi nie dotyczą *ręcznego* sposobu określania współczynników podatności węzłów dla wyboczenia pręta w płaszczyźnie układu i w płaszczyźnie prostopadłej do układu.

Nośność na ściskanie

Ten kontekst wymiarowania dotyczy warunku (39) no-
 śności elementu (pręta) na ściskanie, którego stateczność analizowana jest w aspekcie wyboczenia: giętnego w obu kierunkach - dla wszystkich typów przekrojów, skrętnego - dla otwartych przekrojów jednogałęziowych, giętno-skrętnego - dla przekrojów ceowych, kątowni-kowych i teowych. Przy czym do warunku nośności brany jest najnieko-rzystniejszy przypadek wyboczenia.

ον πέντκοινγανια

STAL		CADSIS
	W <i>Oknie kontekstów wymiarowania</i> wyświetla <i>A</i> - pole powierzchni przekroju brutto,	ane są:
	ψ - współczynnik redukcji nośności przekroj skaniu (dla przekrojów klasy 1,2,3 ψ = 1	u przy ści-)
	<i>N_{Rc}</i> - nośność obliczeniowa przekroju przy osi skaniu pręta,	owym ści-
	 <i>N</i> - wartość siły osiowej działającej w przek zywanym przez znacznik przekroju w o matu pręta, 	coju wska- knie sche-
	oraz	
	<i>lw</i> - długości wyboczeniowa pręta,	
	λ - smukłości pręta dla obu kierunków wybo	czenia,
	$\overline{\lambda}$ - smukłości względne pręta dla obu kieru boczenia,	nków wy-
	N_{cr} - siły krytyczne dla obu kierunków wybocz	enia,
	$N_{cr,z}$ siła krytyczna dla wyboczenia skrętnego,	
	$\boldsymbol{\varphi}$ - minimalna wartość współczynnika niest ogólnej,	ateczności
	Relacja warunku nośności pręta na ściskanie.	
Zakres:	Prety, w których działa ściskajaca siła osiowa.	
Elementy sterowania:	Pręty, w których działa ściskająca siła osiowa. Elisty wyboru Krzywe - umożliwiają dobór krz stateczności ogólnej (odpowiednio w płaszczyz czenia X: i Y:) w sytuacji gdy ustalone przez prwe nie odpowiadają warunkom analizowane, Konieczność doboru krzywych przez użytkow mieć miejsce w przypadku wymiarowania tzw. jednogałęziowych składanych z kilku kształtow których program domyślnie przyjmuje krzywe r "c". Wynika to z tego, że program nie dokonuje cji kształtu przekroju składanego, np. program m faktu, że użytkownik "złożył" dwuteownik z po blach. Dlatego przy tworzeniu listy przekrojów kać "składania" przekrojów typowych, a więc t mogą być deklarowane jako jednokształtowniko Domyślnie, listy te nie są aktywne i w celu i nienia należy włączyć przełącznik Zadane.	wych nie- ach wybo- gram krzy- o zadania. nika może przekrojów ników, dla ekorzystne identyfika- e rozpozna jedynczych należy uni- kich, które we. ch uaktyw-
	<u>Przełącznik</u> wyzarzanie okresia sposob do wych niestateczności ogólnej dla spawanych p skrzynkowych i dwuteowych.	oru krzy- orzekrojów
Funkcja Wyszukaj:	Wyszukuje przekrój pręta, w którym warunel pręta na ściskanie jest najbardziej niekorzystny	c nośności

ZASADY UŻYTKOWANIA	RM-STAL
Punkty 4.5.3., 4.5.4. oraz punkty 3.2. i 3	3.3 Załącznika 1.
Pozwala na wyspecyfikowanie wielkość wyznaczenia momentu krytycznego p które są wykorzystywane przy sprawdz śności (stateczności) przy zginaniu.	ci potrzebnych do orzy zwichrzeniu, aniu warunku no-
Wielkości krytyczne są wyznaczane z do (Z1-9) na podstawie współczynników czeniowych określonych w kontekście <i>czeniowe</i> oraz wielkości tablicowych A lających schemat pręta na zwichrzenie, powinien zadać, posługując się Tablic można dodatkowo określić współrzędr żenia obciążenia a_o względem środka c ju, co ma wpływ na wartość mome Wielkość ta jest zawsze związana z kie czyli z osią mniejszego momentu bezwł to, że znak wartości a_o należy przyjm współrzędnej y punktu przyłożenia obc	e wzorów (Z1-4) w długości wybo- Długości wybo- A_1, A_2 i B , okreś- które użytkownik a Z1-2. Ponadto, ną punktu przyło- ciężkości przekro- ciężkości przekro- erunkiem osi y - Y , tadności. Oznacza tować tak jak dla ciążenia.
Domyslnie wielkosci, o ktorych tu m wane, co oznacza, że pręt jest zabezpie chrzeniem, czyli smukłość względna na równa zeru, a obciążenia przyłożone s trycznej pręta. Okno kontekstów wymiarowania zawie	a zwichrzenie jest są do osi geome- ra nastepujace in-
formacje: μ _y - współczynnik długości wyboczen czenia giętnego z płaszczyzny y-Y, tekście <i>długości wyboczeniowe</i> .	iowej dla wybo- określany w kon-
μ_{ω} -współczynnik długości wyboczen czenia giętno-skrętnego, określar <i>długości wyboczeniowe</i> ,	iowej dla wybo- ny w <i>kontekście</i>
β_x - współczynnik momentu dla zginan zależny od rozkładu momentów zg lany w <i>kontekście nośność przy śc</i> <i>niem</i> ,	ia momentem <i>M_x</i> ginających, okreś- <i>iskaniu ze zgina-</i>
A_1, A_2, B - wielkości tablicowe (Tabl od schematu preta na zwichrzenie	ica Z1-2) zależne
 <i>a_o</i> - współrzędna środka przyłożenia o dem środka ciężkości przekroju, osi y-Y przekroju pręta, 	bbciążenia wzglę- a odmierzana na
$N_{cr,z}$ -siła krytyczna dla wyboczenia skr	ętnego,
	 Punkty 4.5.3., 4.5.4. oraz punkty 3.2. i 3 Pozwala na wyspecyfikowanie wielkość wyznaczenia momentu krytycznego p które są wykorzystywane przy sprawdz śności (stateczności) przy zginaniu. Wielkości krytyczne są wyznaczane z do (Z1-9) na podstawie współczynnikó czeniowe oraz wielkości tablicowych <i>A</i> lających schemat pręta na zwichrzenie, powinien zadać, posługując się Tablic można dodatkowo określić współrzędr żenia obciążenia <i>a</i>_o względem środka c ju, co ma wpływ na wartość mome Wielkość ta jest zawsze związana z kie czyli z osią mniejszego momentu bezwł to, że znak wartości <i>a</i>_o należy przyjm współrzędnej <i>y</i> punktu przyłożenia obc Domyślnie wielkości, o których tu m wane, co oznacza, że pręt jest zabezpie chrzeniem, czyli smukłość względna na równa zeru, a obciążenia przyłożone strycznej pręta. Okno kontekstów wymiarowania zawie formacje: <i>µ</i> - współczynnik długości wyboczen oczenia giętnego z płaszczyzny <i>y</i>-<i>Y</i>, tekście <i>długości wyboczeniowe</i>, <i>β</i> - współczynnik momentu dla zginan zależny od rozkładu momentów zg lany w <i>kontekście nośność przy śc niem</i>, <i>A</i> 1, <i>A</i> 2, <i>B</i> - wielkości tablicowe (Tabli od schematu pręta na zwichrzenie <i>a</i>_o - współrzędna środka ciężkości przekroju, osi <i>y</i>-<i>Y</i> przekroju pręta, <i>N_{er,z}</i> - siła krytyczna dla wyboczenia skr

RM-STAL	ZASADY UŻYTKOWANIA	CADSIS
	$N_{cr,y}$ -siła krytyczna dla wyboczenia giętn zyźnie mniejszego momentu bezwłać M_{cr} - obliczony moment krytyczny dla wy no-skrętnego, który - w przypadku kłości - jest liczbą równą 1x10 ³⁰ . $\overline{\lambda}_{L}$ - smukłość względna pręta na zwichrze	ego w płaszc- lności, 'boczenia gięt- zerowej smu- enie,
Zakres:	Pręty o przekrojach jednogałęziowych o nane w płaszczyźnie większego momentu przekroju.	twartych, zgi- bezwładności
Elementy sterowania	: Edycyjne pola liczbowe dla:	
	 A1:, A2:, B: - dla podania wartości liczb czynników tablicowych A₁, z a0: - współrzędna przyłożenia obcy V 	owych współ- A ₂ , B , ciążenia na osi
	y-1,	
	Tablica Z1-2 - umożliwia ustalenie wielko dla normowych przypadków schematu i ob na podstawie tablicy zawartej w załącznik naciśnięciu tego przycisku na ekranie wy okno, w którym można dokonać wyboru pozycji tablicy Z1-2. Zaakceptowanie wy mocy przycisku OK powoduje przeniesie A1, A2 i B do kontekstu wymiarowania <i>zwio</i> Jeżeli z tablicy Z1-2 wybrany zostanie przy tów stałych lub zmiennych liniowo, wówcza powała automatyczna aktualizacja wielkości podstawie współczynnika β przy każdej zm momentów zginających. Uwaga ta nie dotyc przypadków zwichrzenia oraz sytuacji, gdy wielkości A1, A2 i B zostanie zmieniona ręcz	ości A1, A2 i B ociążenia pręta u 1 normy. Po /świetlane jest odpowiedniej /boru przy po- enie wielkości <i>chrzenie.</i> padek momen- us będzie nastę- A1, A2 i B na nianie rozkładu czy pozostałych którakolwiek z znie.
Funkcja Wyszukaj:	Nieaktywna.	
Nośność (Stateczno	ość) przy zginaniu	
	Devilt 462	

Odniesienie:	Punkt 4.6.2.	
Komentarz:	Ten <i>kontekst wymiarowania</i> łączy się bezpośrednio z warunkiem nośności (54) i ma również ścisły związek	
	z kontekstem Zwichrzenie . Jeśli warunki statyczne i kine-	
	określonemu w normie to uwzględnienie zwichrzenia	
	może być dokonane w tym kontekście przez bezpośred-	
	nie podanie wartości smukłości względnej przy zwi-	
	chrzeniu otrzymanej na drodze odrębnej analizy.	
CadSiS	ZASADY UŻYTKOWANIA	RM-STAL
---------------------	--	---
	Część informacyjna <i>okna kontekstów</i> zawiera:	wymiarowania
	 <i>w</i>- współczynniki redukcji nośności prz- nie, 	ekroju na zgina-
	M_R - nośności przekroju na zginanie,	
	<i>M</i> - wartości momentów zginających w zywanym przez znacznik przekroju p	przekroju wska- pręta,
	N_R - nośność przekroju na ściskanie,	
	N - wartość siły osiowej w przekroju przez znacznik przekroju pręta,	wskazywanym
	$\boldsymbol{\varphi}_{L}$ - współczynnik zwichrzenia,	
	Relację warunku nośności (54).	
Zakres:	Pręty zginane.	
Elementy sterowania	: <u>Edycyjne pole liczbowe</u> λL: dla podania kłości względnej na zwichrzenie,	a wartości smu-
	<u>Przełącznik wyboru</u> Spawanie zmech. , ży wybór krzywej niestateczności (krzyw	od którego zale- a "a" lub "a _o ").
Funkcja Wyszukaj:	Wyszukuje przekrój, dla którego warune <i>tekstu</i> jest najniekorzystniejszy.	k nośności kon-
Nośność przy ścisk	aniu ze zginaniem	

Odniesienie:	Punkt 4.6.
Komentarz:	Łączy się bezpośrednio z warunkiem nośności (58), który jest sprawdzany w obu płaszczyznach głównych prze- kroju. Współczynniki momentów zginających β_x i β_y są wyznaczane przez program na podstawie rozkładu mo- mentów zginających w obu płaszczyznach, według zasad określonych w Tabeli 12, ale - jeśli tego wymaga szcze- gólna sytuacja - to mogą być one przez użytkownika zmienione. Sposób wyznaczania współczynników β jest zależny od warunków połączenia pręta w węzłach (pręt zamocowany; pręt o warunkach przesuwnych). Warunki te są określone poprzez współczynniki podatności wę- złów, które wyznaczane są w kontekście <i>Długości wybo- czeniowe</i> .
	Część informacyjna okna kontekstów wymiarowania za- wiera:
	
	$\overline{\lambda}$ - smukłości względne dla wyboczenia giętnego w obu kierunkach,
RUKCJA UŻYTKOWANIA	MODUŁU 33

ZASADY UŻYTKOWANIA

- $\boldsymbol{\varphi}$ współczynniki wyboczeniowe dla obu kierunków,
- M_R nośności przekroju na zginanie w obu kierunkach,
- M_{max} maksymalne momenty zginające wyznaczone na podstawie ich rozkładów wzdłuż osi pręta.
- N_{RC} nośność przekroju na ściskanie,
- $\overline{\lambda}_{L}$ smukłość względna przy zwichrzeniu, ustalana w *kontekście zwichrzenie* lub zadawana bezpośrednio w *kontekście nośność (stateczność) przy zginaniu*,
- rozstaw stężeń zabezpieczających przekrój przed obrotem. Wielkość ta pozwala na uwzględnienie stateczności giętno-skrętnej przekrojów otwartych bez osi symetrii zgodnie z punktem 4.6.2b. normy.
- φ_L -współczynnik zwichrzenia,

Relacje warunków nośności kontekstu dla obu kierunków.

Zakres: Pręty zginane przy udziale siły ściskającej.

Elementy sterowania: <u>Edycyjne pola liczbowe</u> dla podania wartości współczynników momentów $\boldsymbol{\beta}$ (jeśli ich wartości obliczone automatycznie przez program nie odpowiadają szczególnym warunkom pracy pręta). Aby przywrócić automatyczny tryb wyznaczania wartości tych współczynników, należy je wyzerować.

> <u>Przełącznik</u> **Uwzględniaj przy wyszukiwaniu**, który pojawia się w *oknie kontekstów* w przypadku wymiarowania pręta o zmiennym przekroju. Pozwala on na wyłączenie warunku (58) z lisy kontekstów, tak aby nie był on brany pod uwagę (patrz: "Wskazówki dotyczące wymiarowania") w procedurach ustalania najbardziej niekorzystnego warunku nośności wymiarowanego pręta.

Funkcja Wyszukaj:Wyszukuje przekrój, dla którego warunki nośności kon-
tekstu (warunek 58 normy) są najniekorzystniejsze.
Wyszukiwanie przekroju - w tym przypadku - nie doty-
czy bezpośrednio wprost relacji warunku 58 normy, po-
nieważ warunek ten ma charakter globalny, lecz polega
na ustaleniu nośności przekroju na zginanie w sytuacji,
gdy rozkład momentów zginających jest dwuznakowy, a
przekrój pręta ma różną nośność dla momentów dodat-
nich i ujemnych, co ma miejsce w przypadku przekroju
klasy 4. Niestety, norma nie określa jednoznacznie jak w

Cadsis	ZASADY UŻYTKOWANIA	RM-STAL
	takich przypadkach należy ustalać noś zginanie. W związku z tym przyjęto z padku jednoznakowego rozkładu mom nośność przekroju wyznaczana jest odj ku momentu, natomiast w przypadku kowego - dla znaku dającego bardziej cję warunku 58.	ność przekroju na zasadę, że w przy- entów zginających powiednio do zna- rozkładu dwuzna- niekorzystną rela-
Nośność na ścin	anie	
Odniesienie:	Punkt 4.2.3.	
Komentarz:	W tym kontekście wymiarowania spr śność pręta wynikającą z nośności ścia go przekroju. Część informacyjna okna kontekstów	rawdzana jest no- anek ścinanych je- wymiarowania za-
	wiera: <i>Onv</i> - współczynniki niestateczności pr	zv ścinaniu w obu
		2

\$\$ <i>pv</i> -	współczynniki niestateczności przy ścinaniu w obu
	kierunkach wyznaczone na podstawie względnych
	smukłości ścianek czynnych na ścinanie,

- Aν pola przekrojów czynnych przy ścinaniu (Tablica 7),
- VR nośność przekroju na ścinanie w obu kierunkach,

V	- siły poprzeczne działające w przekroju w obu kie-
	runkach.

Pręty o przekrojach wyszczególnionych w Tablicy 7, w których działa siła poprzeczna.

Elementy sterowania: Brak. **Funkcja Wyszukaj:** Wyszukuje

Zakres:

kcja Wyszukaj:	Wyszukuje przekrój, dla którego warunki nośności kontekstu
	są najniekorzystniejsze.

Nośność na zginanie ze ścinaniem

Odniesienie: Komentarz:	Punkt 4.5.6. Obejmuje obliczenia związane ze sprawdzaniem warun- ków nośności określonych wzorami (55) i (56).		
Część informacyjna okna kontekstów wymiarow wiera:			
	<i>Mr</i> - nośności obliczeniowe przekroju na zginanie w obu kierunkach,		
	$M_{R,v}$ -zredukowane nośności obliczeniowe przekroju na zginanie z uwzględnieniem działania siły poprzecznej - w obu kierunkach,		

STAL	ZASADY UŻYTKOWANIA CADSIS
	<i>M</i> - wartości momentów zginających działających w przekroju - w obu kierunkach,
	<i>VR</i> - nośności obliczeniowe przekroju na ścinanie w obu kierunkach
	 <i>Vo</i> - wartości odniesienia dla sił poprzecznych, powy- żej których uwzględniana jest redukcja nośności obliczeniowej przekroju na zginanie,
	 <i>V</i> - wartości sił poprzecznych w przekroju pręta w obu kierunkach,
	<i>Nr</i> - nośność obliczeniowa przekroju na ściskanie lub rozciąganie,
	N - wartość siły osiowej działającej w przekroju pręta,
	Relacja warunku (55) oraz relacje warunku (56) w obu kierunkach.
Zakres:	Pręty zginane, w których działa siła poprzeczna.
Elementy sterowania	u: Brak.
Funkcja Wyszukaj:	Wyszukuje przekrój, dla którego warunki nośności <i>kon-</i> <i>tekstu</i> sa najniekorzystniejsze.

Środnik pod obciążeniem skupionym

Odniesienie:Punkt 4.2.4. dla przekrojów spawanych lub punkt 6.4.1.
dla elementów walcowanych.Komentarz:Dotyczy sprawdzenia warunku nośności środnika prze-

kontenarz. Botyczy sprawdzenia waranku nosności stodniku prze kroju obciążonego siłą skupioną. Sprawdzeniu tego warunku towarzyszy przeszukanie obciążeń w celu ustalenia najniekorzystniej działającej siły skupionej. Jeśli pręt nie jest obciążony żadną siłą skupioną, to do warunku nośności brane są poprzeczne siły przywęzłowe. Dodatkowo należy określić szerokość c na jakiej rozłożona jest siła skupiona. Dla pręta o spawanym przekroju dwuteowym można również określić odstęp między żebrami krótkimi a_1 .

Dla ustrojów typu belka ciągła jako przywęzłowe siły skupione działające w płaszczyźnie ustroju, zamiast siły poprzecznej, brana jest reakcja podporowa. Zachodzi to, gdy spełnione są następujące warunki:

- w danym węźle rozpatrywany pręt połączony jest tylko z jednym prętem,
- pręt sąsiedni jest współliniowy z rozpatrywanym i posiada tą samą orientację,

SIS	ZASADY UŻYTKOWANIA	RM-STA
	 pręt sąsiedni ma przekrój o tym sar pręt rozpatrywany, 	nym numerze co
	 jedna z głównych osi bezwładnośc w płaszczyźnie ustroju, 	i przekroju leż
	• węzeł jest podparty.	
	Powyższe warunki badane są oddzielnie pręta.	e dla obu węzłów
	Dla przekrojów zawierających więcej n rozdział siły skupionej na poszczególne się na podstawie ich grubości oraz ich dem kierunku działania siły. Dla końcó nego w dwóch płaszczyznach, zamiast r pręta, do obliczeń brana jest ich wypad siły skupionej zależy od orientacji środ tej wypadkowej.	iż jeden środnik środniki odbyw orientacji wzglę w pręta obciążo eakcji w węzłac kowa, a rozdzia ników względen
	Część informacyjna okna kontekstów w wiera:	ymiarowania za
	 c_o - szerokość na jaką rozkłada się pione działające na środnik, 	ę obciążenie sku
	Prc,red - zredukowana nośność środn żeniem skupionym,	nika pod obcia
	 <i>P</i> - wartość siły skupionej, któ przez program poprzez przes pionych przypisanych do pręt żenia-Definiowanie program przywęzłowych sił poprzeczny 	ra jest ustalan szukanie sił sku a w opcji Obcia u głównego ora ych.
	Relację warunku nośności środnika p skupionym.	pod obciążenier
Zakres:	Pręty o przekrojach posiadających środr siłami skupionymi.	nik i obciążonyc
Elementy sterowan	ia: Edycyjne pola liczbowe:	
	 c - długość linii rozkładu obciąże działającego na zewnętrznej pow ju, 	enia skupioneg ierzchni przekro
	 a1 - odległość między żebrami krótkie projektowane) - domyślnie wielko długości pręta, co oznacza, że ni kich. 	mi (jeśli takie s ość ta jest równ e ma żeber kró
	<u>Przełącznik</u> żebra lub żebra krótkie ok scu działania siły skupionej występu	reśla czy w miej ją żebra. Jeże

RM-STAL	ZASADY UŻYTKOWANIA	CADSIS
	przełącznik jest zaznaczony, to wartość si jest wyzerowana.	ty skupionej
Funkcja Wyszukaj:	Wyszukuje punkt przyłożenia obciążenia sku którego warunek nośności <i>kontekstu</i> jest na niejszy. Jeśli na pręcie nie zadano obciążeń to brane są pod uwagę przywęzłowe siły w pręcie,	pionego, dla ajniekorzyst- skupionych, poprzeczne
Środnik w złożony	m stanie naprężenia	
Odniesienie:	Punkt 4.2.5.	
Komentarz:	Obejmuje zagadnienie stateczności środnika stanie naprężenia, co polega na sprawdzen (24).	w złożonym 11u warunku
	Część informacyjna okna kontekstów wymia wiera:	arowania za-
	 φ_p - współczynnik niestateczności środr czony na podstawie jego smukłości w 	iika wyzna- zględnej,
	Nw - część siły podłużnej przypadającej na	środnik,
	<i>Nrw</i> - nośność obliczeniowa środnika przy ś	ciskaniu,
	<i>Mw</i> - część momentu zginającego w przek dającego na środnik,	roju przypa-
	<i>MRw</i> - nośność obliczeniowa środnika na zgi	nanie,
	 <i>P</i> - wartość obciążenia skupionego (jeśli nym przekroju), 	działa w da-
	P _R - nośność obliczeniowa środnika obcia skupioną,	ążonego siłą
	V - wartość siły poprzecznej w przekroju,	,
	 Vr - nośność obliczeniowa przekroju pr siłą poprzeczną, 	zy ścinaniu
	Relację warunku (24) nośności środnika stanie naprężenia.	w złożonym
Zakres:	Pręty o dwuteowym przekroju spawanym kla	.sy 4.
Elementy sterowania	Przełącznik wyboru Żebra krótkie, dla e wybrania opcji obliczeń, dla których nie uw sił skupionych działających na środnik, tzn. ne jest jego wzmocnienie żebrami krótkimi.	wentualnego zględnia się projektowa-
Funkcja Wyszukaj:	Wyszukuje przekrój pręta, w którym relacja śności środnika w złożonym stania napręże najniekorzystniejsza,	warunku no- nia (24) jest

CADSIS

Stan graniczny użytkowania		
Odniesienie:	Punkt 3.3.	
Komentarz:	Dotyczy sprawdzania warunków stanu granicznego użyt- kowania w zakresie ugięć pręta i przemieszczeń pozio- mych węzłów. Szczególną cechą tego kontekstu wymia- rowania jest to, że przemieszczenia służące do spraw- dzania warunków SGU wyznaczane są zawsze wg teorii I- go rzędu dla charakterystycznych wartości obciążeń.	
	wiera:	
	<i>a</i> - największe ugięcie osi pręt,	
	a_{gr} - graniczna wartość ugięcia pręta,	
	 <i>h</i> - wysokość poziomu jednego z dwóch węzłów A lub B, dla którego jest większa wartość stosunku u/h (wysokość ta liczona jest od najniżej poło-żonego węzła układu), 	
	<i>U</i> - przemieszczenie poziome węzła, dla którego wy- znaczono wysokość <i>h</i> ,	
	U_{gr} - graniczna wartość przemieszczenia poziomego węzła,	
	Relację warunków stanu granicznego użytkowania.	
Zakres:	Wszystkie przypadki.	
Elementy sterowania:	<u>Przełacznik wyboru:</u> Ugięcia liczone od cięciwy pręta, umożliwia wyznaczanie ugięć pręta z pominięciem jego ruchu sztywnego, tzn. z pominięciem przemieszczeń jego węzłów. Wyłączenie tego przełącznika powoduje wyzna- czenia ugięć, jako całkowite przemieszczenia prostopadłe do pręta. Przełącznik ten jest niedostępny, gdy zadane jest zginanie w kierunku prostopadłym do płaszczyzny układu, a pręt w tym kierunku jest prętem przesuwnym ($\kappa v > 0,1$).	
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	

<u>Listy ograniczeń normowych:</u> zawierają graniczne wartości względne, ograniczające ugięcia pręta oraz przemieszczenia poziome węzłów. Służą one do ustalenia granicznych wartości przemieszczeń.

Funkcja Wyszukaj: Nieaktywna,

Łączniki - smukłości zastępcze **Odniesienie:** Punkt 4.7. Komentarz: Grupuje dane i wyniki obliczeń dotyczące smukłości i współczynników redukcji nośności elementów łaczących (przewiązki lub skratowania) gałęzie prętów o typowych przekrojach wielogałęziowych. Dla większości przekrojów wielogałęziowych możliwy jest wybór typu łącznika i w zależności od tego wyboru (przewiązki lub skratowania) należy określić jego wymiary (w przypadku przewiązek) lub katalogowy rozmiar kształtownika (w przypadku skratowania) oraz wymiar określający ich rozmieszczenie wzdłuż pręta. Część informacyjna okna kontekstów wymiarowania zawiera: λv - smukłość gałęzi, λm - smukłość zastępcza pręta przy wyboczeniu względem osi nieprzecinającej materiał, Współczynniki: φ_p - niestateczności miejscowej gałęzi przekroju, φ_l - współczynnik wyboczeniowy dla pojedynczej gałęzi między przewiązkami lub węzłami skratowania, Współczynniki redukcji nośności: ψ_0 - na ściskanie, ψ_x - na zginanie względem osi x-X, ψ_v - na zginanie względem osi y-Y, Zakres: Pręty o typowych (generowanych) przekrojach wielogałęziowych. Elementy sterowania: Grupa przełączników wyboru: Przewiązki / Skratowanie L / Skratowanie U przy pomocy których dokonuje się wyboru rodzaju łącznika gałęzi przekroju. Z przełącznikiem Przewiązki związane są liczbowe pola edycyjne określające: **b:** - szerokość przewiązki, g: - grubość przewiązki, 40 INSTRUKCJA UŻYTKOWANIA MODUŁU

Cadsis	ZASADY UŻYTKOWANIA	RM-STAL
	L1: - osiowy rozstaw przewiązek wzdłu	iż pręta.
	Zprzełącznikiem Skratowanie L $związane$	są:
	<u>Lista</u> kątowników dla wyboru nomin katalogowego dla łącznika,	ału kątownika
	L1: - długość pola skratowania.	
	Z przełącznikiem Skratowanie U związane	są:
	Lista ceowników dla wyboru nominału talogowego dla łącznika,	ı ceownika ka-
	L1: - długość pola skratowania.	
	Dodatkowo, przy wyborze łączników jak udostępniany jest przełącznik wyboru s dla wskazania, że chodzi o skratowanie schematowi <i>b</i>) na Rys.8 normy. Dodatkow skratowania mają zawsze pręty poziome.	o skratowanie, Skratowanie 8b, odpowiadające wo przyjęto, że
Funkcja Wyszukaj:	Nieaktywna,	
Nośność łączników		
Odniesienie:	Punkt 4.7.3. oraz 4.4.5 dla skratowań.	
Komentarz:	W zależności od zadeklarowanego ty (przewiązki lub skratowania) sprawdzane znaczonych sił w łącznikach do ich nośno o nośności przewiązek decydują moment poprzeczna, natomiast w prętach skratowa siła osiowa wyznaczana na podstawie obl poprzecznej działającej w pręcie.	pu łączników są relacje wy- ści Przy czym zginający i siła nia - ściskająca iczeniowej siły
	Część informacyjna okna kontekstów wyr wiera:	niarowania za-
	Dla przewiązek: Q - obliczeniowa siła poprzeczna,	
	$M\varrho$ - moment zginający w przewiązce,	
	Vq - siła poprzeczna w przewiązce,	
	<i>Mr</i> - nośność obliczeniowa przewiązki	przy zginaniu,
	Vr - nośność obliczeniowa przewiązki Relacje warunków nośności przewiązci i ścinanie.	przy ścinaniu, ek na zginanie
	Dla skratowań:	
	<i>A</i> -pole przekroju krzyżulca skratowa	ania,
	Nna nośność obliczoniowa krzyżulaćy	alzrotowonio
	Q -obliczeniowa siła poprzeczna,	v skratowania,

RM-STAL	ZASADY UŻYTKOWANIA CADSIS		
	N -wartość ściskającej siły osiowej w krzyżulcu skratowania,		
	λ - smukłość krzyżulca skratowania, $\overline{\lambda}$ - smukłość względna krzyżulca skratowania,		
	 		
	Relację warunku nośności krzyżulca skratowania na ściskanie		
Zakres:	Pręty o typowych (generowanych) przekrojach wieloga- łęziowych.		
Elementy sterowania	: Brak.		
Funkcja Wyszukaj:	Wyszukuje położenie przekroju, w którym relacje wa- runków nośności dla łączników byłyby najniekorzyst- niejsze.		

TWORZENIE DOKUMENTACJI WYMIAROWANIA - WYDRUKI

Uwagi ogólne

Koncepcję tworzenia dokumentacji wymiarowania prętów konstrukcji oparto na wykorzystaniu zaawansowanych edytorów tekstu dla Windows, takich jak: MS WORD 6.0PL, MS WORD 7.0PL, AMI-PRO 3.1PL, MS WORKS, WORD PERFECT, które są zdolne akceptować (importować ze schowka) dane zapisane w formacie RTF (ang. Reach Text Format). A więc warunkiem koniecznym dla sporządzania wydruków jest posiadanie, zainstalowanego w systemie Windows, takiego edytora. Najlepszym rozwiązaniem w tym względzie jest zainstalowanie edytora MS WORD 6.0PL, dla którego zrealizowano w module RM-STAL funkcję bezpośredniego przekazywania dokumentu.

Idea współpracy modułu RM-STAL z *edytorem* polega na korzystaniu z gotowych plików wzorcowych (umieszczanych w podkatalogu ARKUSZE podczas instalowania modułu RM-STAL). Pliki wzorcowe (*arkusze*) są przygotowane przez autorów programu w edytorze MS WORD 6.0PL (w formacie RTF) i stanowią bazę dla tworzenia dokumentacji wymiarowania. Treść merytoryczna poszczególnych *arkuszy* jest ściśle dostosowana do ogólnej strategii procesu wymiarowania w module RM-STAL i w związku z tym - przy ewentualnych zmianach zawartości *arkuszy*, podejmowanych przez użytkownika, należy się raczej ograniczyć do operacji związanych z formatowaniem tekstów. Bowiem *arkusze* - oprócz akapitów zwykłego tekstu zawierają sekcje ze specjalnymi polami, w miejsce których podstawiane są przez moduł RM-STAL różne wartości liczbowe, wyrażenia, relacje i rysunki.

Tworzenie dokumentu

Tworzenie dokumentu jest możliwe na każdym etapie wymiarowania, a więc od momentu uruchomienia modułu RM-STAL. W tym celu przewidziano trzy sposoby tworzenia dokumentacji:

- **Bezpośredni** polegający na przesyłaniu fragmentów dokumentu do edytora MS WORD,
- **Pośredni** polegający na przesłaniu całego (poskładanego z arkuszy) dokumentu do schowka, z zamiarem "wklejenia" go do *edytora*,
- Wydruk tabelaryczny będący zestawieniem wybranych warunków nośności dla wszystkich prętów układu.

Bezpośredni sposób tworzenia dokumentu

Warunkiem koniecznym tworzenia dokumentu w tym trybie jest uprzednie uruchomienie edytora MS WORD. Jeśli edytor nie został uruchomiony przed uruchomieniem modułu RM-STAL, to można tego dokonać bez potrzeby wychodzenia z aplikacji RM-WIN. W tym celu należy:

- Przełączyć się na Menedżer programów sekwencyjnie przy pomocy klawiszy <Alt> + <Tab> lub za pośrednictwem okna dialogowego Aplikacje aktywne menedżera programów - klawisze <Ctrl> + <Esc>.
- 2. Uruchomić edytor MS WORD.
- 3. Ewentualnie otworzyć właściwy dokument, do którego mają być przekazywane *arkusze wynikowe* wymiarowania. Jeśli tworzony dokument ma być nowym dokumentem, to wskazane jest dokonanie wstępnego sformatowania układu strony.
- Powrócić do modułu RM-STAL sekwencyjnie przy pomocy klawiszy **<Alt> + <Tab>** lub za pośrednictwem okna dialogowego **Aplikacje aktywne** Menedżera programów - klawisze **<Ctrl> + <Esc>**.

Od tego momentu można przekazywać fragmenty dokumentu do edytora MS WORD, co polega na używaniu przycisku **Do Worda** okna dialogowego modułu RM-STAL. Obowiązują przy tym następujące zasady:

- Przysyłany arkusz jest ściśle związany z aktualnym kontekstem wymiarowania, tzn. jeśli np. aktualnym kontekstem wymiarowania jest kontekst Cechy przekroju, to użycie przycisku Do Worda spowoduje przesłanie - do aktywnego dokumentu edytora MS WORD - arkuszy wynikowych związanych z tym kontekstem. Przed przesłaniem arkuszy wykonywane są obliczenia związane z aktualnym kontekstem, w wyniki podstawiane są w odpowiednie pola wynikowe arkuszy.
- Przesyłany *arkusz* jest zawsze umieszczany w aktywnym dokumencie edytora MS WORD w miejsce wskazywane przez kursor tego dokumentu. Oznacza to, że dokument wymiarowania może być składany swobodnie.
- Wszelkie czynności związane z nadaniem dokumentowi formy edytorskiej muszą być przeprowadzane w edytorze, co pozostaje w gestii użytkownika.

Pośredni sposób tworzenia dokumentu

Tworzenie dokumentu w tym trybie odbywa się za pośrednictwem schowka i powinien być używany przy współpracy modułu RM-STAL z innymi edytorami niż MS WORD. Czynności jakie należy wykonać dzielą się na dwa etapy:

- 1. Przekazanie do schowka dokumentu poskładanego z arkuszy wynikowych, co wymaga:
 - użycia przycisku **Do schowka** okna dialogowego modułu RM-STAL, co spowoduje wyświetlenie okna dialogowego przełączników wyboru zawartości dokumentu (Rys.5.),
 - wyspecyfikowania zawartości przekazywanego dokumentu za pomocą przełączników wyboru okna dialogowego z ewentualną klauzulą automatycznego wyszukiwania po pręcie najniekorzystniejszych relacji warunków nośności.
 - przesłania dokumentu do schowka przycisk **OK** okna dialogowego wyboru.

- 2. Przełączenie **Menedżera programów** na aplikację edytora lub jeśli edytor nie został uruchomiony uruchomienie edytora.
- 3. Zastosowanie funkcji edytora "wklejania" ze schowka.
- 4. Przetworzenie dokumentu w edytorze i wydruk.

Rys. 5.

<u>Uwagi</u>: Po złożeniu dokumentu przez moduł RM-STAL następuje przekazanie go do schowka. Od tego momentu kontrolę nad dalszym procesem przejmuje system Windows. W przypadku komputera o małej pamięci lub przy większej liczbie uruchomionych aplikacji, ładowanie dokumentu do schowka wymagać będzie dłuższego czasu, co może sprawiać wrażenie zawieszenia się systemu Windows. Należy jednak odczekać aż do momentu zamknięcia przez system okna dialogowego przełączników wyboru.

Pośredni sposób tworzenia dokumentu wymiarowania dotyczy również edytora MS WORD.

Jeśli przełącznik **Wyszukiwanie** okna dialogowego przełączników wyboru jest włączony to w trakcie przed dołączeniem kolejnego arkusza wynikowego do dokumentu, dokonywane jest automatyczne wyszukiwanie po pręcie dla wyznaczenia najniekorzystniejszej relacji warunków nośności w poszczególnych kontekstach wymiarowania. Jeśli przełącznik ten jest wyłączony, to aspekt wymiarowania dotyczy przekroju wskazywanego przez znacznik przekroju w oknie schematu pręta. Odnosi się to, rzecz jasna, do tych kontekstów wymiarowania, których warunki nośności są lokalne, a więc zależne od przekroju.

RM-STAL

Wydruk tabelaryczny

Tryb ten umożliwia tworzenie dokumentu w postaci tabelarycznych zestawień nośności wszystkich prętów układu. Może być on szczególnie przydatny dla udokumentowania obliczeń układów zbudowanych w dużej liczby prętów, np. kratownice. Dla każdego warunku nośności objętego zakresem obliczeń RM-Stal, tworzona jest oddzielna tabela. Oprócz tego możliwe jest wydrukowanie tabeli zawierającej najniekorzystniejsze warunki nośności, tzn. warunki, które decydują o nośności pręta.

Moduł RM-Stal umożliwia wydrukowanie zestawień tabelarycznych dla następujących warunków nośności:

- *Warunki najniekorzystniejsze* oprócz określenie rodzaju najniekorzystniejszego warunku nośności i stopnia wykorzystania nośności, zawiera diagram nośności prętów.
- *Stateczności miejscowa* dotyczy punktu 4.2.2 normy i zwiera określenie klasy przekroju.
- Nośności na zginanie dotyczy warunku (52) i (54) normy.
- Zginanie ze ścinaniem dotyczy warunku (55) normy.
- Nośność na ścinanie dotyczy punktu 4.2.3 normy.
- *Ścinanie z siłą osiową* dotyczy warunku (56) normy.
- Nośność na rozciąganie dotyczy punktu 4.3 normy.
- Nośność na ściskanie dotyczy punktu 4.4 normy.
- *Ściskanie ze zginaniem* dotyczy punktu 4.6 normy. Znaczenie wielkości nx, ny, mx i my jest następujące:

$$n_x = \frac{N}{\varphi_x N_{RC}}$$
, $n_y = \frac{N}{\varphi_y N_{RC}}$, $m_x = \frac{\beta_x M_{x \max}}{\varphi_L M_{Rx}}$, $m_y = \frac{\beta_y M_{y \max}}{M_{Ry}}$.

- Osłabienia otworami dotyczy punktu 4.1.2 normy.
- Nośność środnika dotyczy punktu 4.2.4 i 6.4.1 normy.
- Środnik w złożonym stanie naprężeń dotyczy warunku (24) normy dla przekrojów klasy 4.
- *Nośność łączników* dostępny tylko dla przekrojów wielogałęziowych.
- Stan graniczny użytkowania dotyczy punktu 3.3.1, 3.3.2, 3.3.3 normy.
- *Długości wyboczeniowe* tabela zawierające informacje dotyczące długości wyboczeniowych przyjętych do obliczeń.

<u>Uwaga</u>: Tabele, ze względu na swój skrótowy i syntetyczny charakter, nie zawierają wszystkich wielkości dotyczących wymiarowania poszczególnych prętów układu. W celu sporządzenia tabelarycznego wydruku wymiarowania stali należy:

- wywołać opcję Pliki/Drukuj,
- zaznaczyć przełącznik Stal,
- używając przycisku **Opcje** określić zakres wydruku, tzn. określić, które tabele mają zostać wydrukowane.

Tabele związane z wymiarowaniem stali dołączane są do wydruku tworzonego przez RM-Win, zawierającego dane o ustroju oraz wyniki obliczeń statycznych.

<u>Uwagi</u>: Uaktywnienie przełącznika **Stal** powoduje automatyczne ustawienie i zablokowanie przełącznika **Obciążenia obliczeniowe**. Oznacza to, że wszystkie warunki stanu granicznego nośności wyznaczane są na podstawie obliczeniowych wartości obciążeń, natomiast warunki stanu granicznego użytkowania - dla wartości charakterystycznych.

WSKAZÓWKI DOTYCZĄCE WYMIAROWANIA

W tej części instrukcji omówione zostaną wybrane aspekty wymiarowania konstrukcji stalowych przy użyciu modułu RM-STAL.

Pręty o zmiennym przekroju (pręty niepryzmatyczne)

W programie głównym pakietu RM-WIN istnieje możliwość deklarowania prętów o liniowo zmieniających się wzdłuż pręta wymiarach przekroju (*patrz instrukcja* RM-WIN) oraz dokonywania obliczeń statycznych dla takich prętów. Ponieważ ściskane pręty o zmiennym przekroju nie mogą być wymiarowane na podstawie PN-90/B-03200, poniżej przedstawiona zostanie propozycja algorytmu (uzupełnienie algorytmu normowego) umożliwiającego sprawdzanie stateczności takich prętów.

Propozycja ta polega na sprawdzeniu stateczności technicznej pręta w oparciu o obliczenia wg teorii II rzędu w połączeniu z jawnym określeniem imperfekcji pręta. Została ona opracowana na podstawie literatury opisującej zagadnienia stateczności prętów ściskanych [1], [2].

Zgodnie z literaturą, sprawdzanie stateczności prętów niepryzmatycznych metodą współczynnika wyboczeniowego jest niedopuszczalne, a jedyną możliwą metodą jest analiza oparta na teorii II rzędu.

W związku z tym proponuje się sprawdzanie stateczności prętów ściskanych o zmiennym przekroju na podstawie następującego warunku:

 $\frac{N(x)}{NRC(x)} + \frac{M(x)}{MR(x)} \leq 1,$

w którym:

$N_{(x)}, M_{(x)}$	- siła osiowa i moment zginający w przekroju
	o współrzędnej x wyznaczone wg teorii II-go
	rzędu z udziałem imperfekcji geometrycznych,
$N_{RC(x)}, M_{R(x)}$	x) - nośność na ściskanie i na zginanie przekroju
	o współrzednej x.

Powyższy warunek odpowiada warunkowi (54) normy dla $\varphi_L = 1$ przy jednokierunkowym zginaniu.

Podstawowe znaczenie dla oceny stateczności wg proponowanej metody mają wartości imperfekcji geometrycznych, które uwzględniają oprócz odchyłek od prostoliniowości pręta i jego wstępnego przechyłu, również naprężenia spawalnicze oraz naprężenia resztkowe powstałe w procesie walcowania. Wszystkie te imperfekcje uwzględniane są w postaci zastępczych imperfekcji geometrycznych jako wstępne wygięcie osi pręta oraz jako wstępne pochylenie pręta. Imperfekcje w postaci pochylenia pręta, mają znaczenie dla układów przesuwnych i można je przyjmować zgodnie z **PN-90/B-03200** p. 5.4.2.

Ponieważ polska norma nie określa wartości imperfekcji w postaci wygięcia pręta, konieczne jest odwołanie się do norm europejskich oraz do propozycji polskiego dokumentu krajowego NAD-PN. Poniżej przedstawiony sposób przyjmowania wartości tej imperfekcji zaczerpnięto z pracy [2] oraz normy DIN 18800 T.2 [3]:

Krzywa wybo- czeniowa	wg EC3	wg NAD-PN	wg DIN 18800 T.2
a	$0,21$ ($\overline{\lambda}$ - 0,2) k	$0,17\overline{\lambda}k$	<i>l</i> _w / 500
b	$0,34$ ($\overline{\lambda}$ - 0,2) k	$0,28\overline{\lambda}k$	<i>l</i> _w / 250
С	$0,49$ ($\overline{\lambda}$ - 0,2) k	$0,39\overline{\lambda}k$	<i>l</i> _w / 200
d	$0,76 (\bar{\lambda} - 0,2) k$	$0,61 \overline{\lambda} k$	<i>l</i> _w / 140

Wstępną strzałkę wygięcia (w_o) można przyjmować o wartości:

gdzie:

k = W/A - promień rdzenia przekroju wyrażonym jako stosunek wskaźnika wytrzymałości przekroju (W) do jego pola powierzchni (A),

 $\overline{\lambda}$ - smukłość względna pręta,

 l_w - długość wyboczeniowa pręta.

Powyższa tabela zawiera wartości w_o dla czterech krzywych wyboczeniowych używanych w normach europejskich. Krzywe te - na postawie DIN 18800 T.2. - dobierane są podobnie jak w PN-90/B-03200, z następującymi różnicami:

- dla spawanych przekrojów skrzynkowych, gdy smukłości blach prostopadłych do kierunku wyboczenia h/t < 30, przyjmuje się krzywą "c",
- dla dwuteowników walcowanych, gdy t > 40 dla wyboczenia w obu kierunkach przyjmuje się krzywą "d"
- dla dwuteowników spawanych, gdy t > 40 dla wyboczenia względem osi x przyjmuje się krzywą "c", a względem osi y - krzywą "d".

W związku z tym w celu sprawdzenia stateczności niepryzmatycznego pręta ściskanego lub ściskanego i zginanego przy użyciu pakietu RM-WIN i RM-STAL należy:

- 1. Zdefiniować zadanie w module RM-WIN, tzn. określić schemat statyczny układu, jego obciążenia oraz przekroje prętów (pręty o zmiennym przekroju muszą mieć przydzielone po dwa przekroje).
- 2. Określić wartości imperfekcji geometrycznych w opcji **Geometria-Imperfekcje** programu RM-WIN dla poszczególnych prętów układu. Przyjmowanie znaków wartości imperfekcji polega na takim ich dobraniu, aby uzyskany rozkład imperfekcji był zgodny z przewidywaną formą utraty stateczności układu, tzn. stanowić będzie najniekorzystniejszy przypadek imperfekcji. Na przykład dla wspornika imperfekcje w_o i $f_o/L = \psi_o$ powinny mieć przeciwne znaki. Przyjmując wartość wstępnego wygięcia pręta wg DIN 18800, dla wspornika o długości do 5 m wg krzywej wyboczeniowej "b", otrzyma się:

 $w_0/L = \mu/250 = 0,008$ $f_0/L = 1/200 = 0,005$

- 3. Włączyć obliczenia wg teorii II rzędu (opcja Wyniki-Teoria II rzędu).
- 4. Przejść do opcji **Wyniki/Stal wg PN-90/B-03200**, wybrać pręt o zmiennym przekroju i wywołać moduł wymiarowania.
- 5. Wybrać kontekst wymiarowania *Nośność (Stateczność) przy zginaniu* i dokonać wyszukiwania przekroju, dla którego warunek (54) jest najniekorzystniejszy. Jeżeli warunek (54) jest spełniony we wszystkich przekrojach pręta, można przyjąć, że stateczność pręta niepryzmatycznego jest zachowana.
- <u>Uwaga:</u> Nie należy uwzględniać plastycznej rezerwy nośności przekroju na zginanie dla przekrojów klasy 1 i 2, ponieważ przedstawiona powyżej metoda analizy nie dotyczy zagadnienia stateczności pozasprężystej pręta. W związku z tym przełącznik **Obciążenia statyczne** powinien być wyłączony.

Należy zauważyć, że przedstawiony sposób sprawdzania stateczności prętów pozwala na badanie stateczności giętnej dla wyboczenia w płaszczyźnie układu. Oznacza to, że w celu sprawdzenia stateczności pręta dla wyboczenia w płaszczyźnie prostopadłej do płaszczyzny układu, należy dokonać dodatkowej analizy. Polegać ona może na zdefiniowaniu odrębnego pręta o warunkach węzłowych odpowiadających rzeczywistym warunkom węzłowym dla pręta przy zginaniu w płaszczyźnie prostopadłej do płaszczyzny układu. Przekroje przydzielone do tego pręta powinny być obrócone o 90°. Po właściwym obciążeniu pręta można sprawdzić jego stateczność w opisany wcześniej sposób.

Literatura:

- [1] Stanisław Weiss, Marian Giżejowski: Stateczność konstrukcji metalowych. Arkady Warszawa 1991.
- [2] Zbigniew Mendera: Częściowe współczynniki bezpieczeństwa i modele obliczeniowe konstrukcji stalowych na tle Eurokodu 3. Inżynieria i Budownictwo. Nr 11/95 s.577-582.
- [3] DIN 18800 Teil 2. Stahlbauten. Stabilitätsfälle. Knicken von Stäben und Stabwerken.

Przekroje o pochylonych, głównych osiach bezwładności

Spośród przekrojów, które mogą być wymiarowane przy użyciu modułu RM-STAL występują przekroje o pochylonych osiach głównych. Do takich przekrojów należą pojedyncze kątowniki i zetowniki oraz wszystkie pozostałe przekroje, dla których oś pionowa jest osią większego momentu bezwładności (oś X).

Program główny pakietu RM-WIN wyznacza siły przekrojowe i współczynniki podatności węzłów pręta, w płaszczyźnie układu. Wielkości dotyczące pracy pręta w drugim kierunku (prostopadłym do płaszczyzny układu) można określić bezpośrednio w module RM-STAL. W związku z tym, dla przekrojów o osiach pochylonych, zachodzi konieczność sprowadzenia wymienionych wielkości do kierunków określonych poprzez główne osie bezwładności przekroju. Sposób przekształcania sił przekrojowych nie wymaga szerszego komentarza, gdyż odpowiada on zwykłej transformacji wektorów przy obrocie układu współrzędnych, wyrażonej następująco:

$$M_{x} = -M_{u} \cos(\alpha) + M_{p} \sin(\alpha)$$

$$M_{y} = M_{u} \sin(\alpha) + M_{p} \cos(\alpha)$$

$$Q_{y} = Q_{u} \cos(\alpha) + Q_{p} \sin(\alpha)$$

$$Q_{x} = -Q_{u} \sin(\alpha) + Q_{p} \cos(\alpha)$$

gdzie α jest kątem nachylenia osi przekroju, wielkości z indeksem "u" są wielkościami dotyczącymi zginania w płaszczyźnie układu, natomiast z indeksem "p" dotyczą zginania w płaszczyźnie prostopadłej do płaszczyzny układu.

Współczynniki podatności węzłów potrzebne do wyznaczenia długości wyboczeniowych pręta transformowane są według następującej reguły:

$$\kappa_{\rm x} = \kappa_{\rm u} \cos^2(\alpha) + \kappa_{\rm p} \sin^2(\alpha)$$

$$\kappa_{\rm y} = \kappa_{\rm u} \sin^2(\alpha) + \kappa_{\rm p} \cos^2(\alpha)$$

gdzie:

- κ_x , κ_y współczynniki podatności węzła dla wyboczenia względem osi głównych przekroju,
- κ_u , κ_p współczynniki podatności węzła dla wyboczenia w płaszczyźnie układu i w płaszczyźnie prostopadłej do płaszczyzny układu.

Przy pomocy powyższej formuły przekształcane są poszczególne współczynniki podatności węzłów, tzn. κ_a , κ_b i κ_v . Dzięki tak przyjętej transformacji, dla osi nachylonych pod kątem 45°, następuje postulowane przez normę uśrednienie długości wyboczeniowych.

Pręty o przekrojach z kształtowników giętych

Mimo, że opcja **Przekroje** programu głównego RM-WIN, służąca do kreowania przekrojów prętów zadania zawiera jedynie katalogi standardowych kształtowników giętych, to - dzięki rozszerzeniu zakresu wymiarowania na tzw. jednogałęziowe przekroje składane z wielu kształtowników - możliwe jest również wymiarowanie prętów o niestandardowych przekrojach giętych. W takich przypadkach należy posługiwać się dostępnymi w opcji **Przekroje** odpowiednimi typami giętych kształtowników standardowych oraz kształtowników o wymiarach deklarowanych przez użytkownika. Na przykład tzw. kątowniki trójgięte można wykreować przez odpowiednie złożenie dwóch kątowników (patrz Przykład 11). Przy "składaniu" przekroju giętego należy pamiętać o zapewnieniu ciągłości poszczególnych elementów składowych (kształtowników) tak, aby całość stanowiła przekrój jednogałęziowy. Chociaż koncepcja składania przekroju z pojedynczych blach (prostokątów) wydaje się tu najbardziej naturalna, to użycie innych kształtowników (jeśli jest to w konkretnym przypadku możliwe) znacznie ułatwia kreowanie zamierzonego przekroju oraz ułatwia procedurom obliczeniowym modułu identyfikację przekroju oraz wyznaczanie charakterystyki geometrycznej i wytrzymałościowej. Poniżej pokazano sposoby modelowania przekrojów gietych.

Archiwizacja parametrów wymiarowania

Wszystkie wielkości związane z wymiarowaniem pręta (wartości zadawane przez użytkownika w edycyjnych polach liczbowych, ustawienia opcji wymiarowania na przełącznikach) mogą być zapisane w odrębnym pliku dyskowym o takiej samej nazwie jak zadanie zdefiniowane w programie głównym i rozszerzeniu ".rmw".

Plik ten jest tworzony automatycznie w aktualnym katalogu zadań przy pomocy opcji dotyczących zapisu zadania z poziomu programu głównego RM-WIN (opcja **Pliki.- Zapisz/Zapisz jako...**), a warunkiem jego utworzenia jest dokonanie jakichkolwiek zmian parametrów wymiarowania w module RM-STAL. Parametry wymiarowania są zapamiętywane w formie rekordów, oddzielnie dla każdego pręta ustroju. Po uruchomieniu modułu RM-STAL dla danego pręta sprawdzane jest, czy parametry wymiarowania nie zostały wcześniej zapisane w pliku. Jeśli tak, to są one z tego pliku odczytywane, w przeciwnym razie są inicjowane domyślnie.

Przy archiwizowaniu zadań w pamięci zewnętrznej (dyskietki) z poziomu systemu operacyjnego należy mieć również na uwadze plik zadania o rozszerzeniu ".rmw".

Plik, o którym tu mowa, jest aktualizowany przez program główny RM-WIN. Ma to miejsce ilekroć dokonywane są zmiany w opcjach programu głównego, a dotyczące:

- geometrii pręta (położenie węzłów, dzielenie pręta),
- schematu pręta,
- przypisania innego rodzaju przekroju,
- usunięcia pręta,

W takich sytuacjach parametry wymiarowania są usuwane z pliku archiwalnego, a więc po wywołaniu modułu RM-STAL dla zmodyfikowanego pręta wszystkie parametry wymiarowania są inicjowane na nowo.

PRZYKŁADY

Poniżej przytoczono wydruki wyników wymiarowania dla kilku zadań, zaczerpniętych z ogólnie dostępnych źródeł. Wydruki zostały utworzone przy współpracy z edytorem MS WORD 7.0 PL.

Przykład 1

Temat: Nośność jednogałęziowego słupa ściskanego.

Źródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów ściskanych osiowo według PN-90/B-03200, Inżynieria i Budownictwo Nr 1/91, Przykład 1.

Przekrój:

Wymiary przekroju:

I 300 PE h=300,0 g=7,1 s=150,0

t=10,7 r=0,0.

Charakterystyka geometryczna przekroju:

Jxg=8360,0 Jyg=604,0 A=53,80

ix=12,5 iy=3,4

Jw=125934,1 Jt=18,8 is=12,9.

Materiał: 18G2.

Wytrzymałość fd=305 MPa dla g=10,7.

Siły przekrojowe:

xa = 0,000; xb = 4,200.

Obciążenia działające w płaszczyźnie układu: A

N = -450,00 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = -83,64$ MPa $\sigma_C = -83,64$ MPa.

Stateczność lokalna.

xa = 0,000; xb = 4,200.

Przekrój spełnia warunki przekroju klasy 4.

Rozstaw poprzecznych usztywnień ścianki a = 4200,0 mm.

Warunek stateczności ścianki dla ścianki najbardziej narażonej na jej utratę (9):

$$\sigma_{\rm C} / \varphi_{\rm p} f_{\rm d} = 0,297 < 1$$

Przyjęto, że przekrój wymiarowany będzie w stanie krytycznym.

Współczynniki redukcji nośności przekroju:

- dla ściskania: $\psi_0 = \varphi_p = 0.925$

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg załącznika 1 normy:

CADSIS

 $\begin{array}{ll} \chi_1=1,000 & \chi_2=1,000 & \text{weyzly nieprzesuwne} \implies \mu=1,000 & \text{dla} \\ l_o=4,200 & & \\ l_w=1,000\times4,200=4,200 & m \end{array}$

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

 $\begin{array}{ll} \chi_1 = 1,000 & \chi_2 = 1,000 & \text{weyzly nieprzesuwne} \implies \mu = 1,000 & \text{dla} \\ l_o = 4,200 & & \\ l_w = 1,000 \times 4,200 = 4,200 & m \end{array}$

- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 1,000$. Rozstaw stężeń zabezpieczających przed obrotem $l_{o\omega} = 4,200$ m. Długość wyboczeniowa $l_{\omega} = 4,200$ m.

Siły krytyczne:

$$N_{x} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 8360,0}{4,200^{2}} \ 10^{-2} = 9588,73 \text{ kN}$$

$$N_{y} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 604,0}{4,200^{2}} \ 10^{-2} = 692,77 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\overline{w}}}{l_{\overline{w}}^{2}} + GJ_{T} \right) = \frac{1}{12,9^{2}} \left(\frac{3,14^{2} \times 205 \times 125934,1}{4,200^{2}} \ 10^{-2} + 80 \times 18,8 \times 10^{2} \right) = 1771,62 \text{ kN}$$

Nośność przekroju na ściskanie:

xa = 0,000; xb = 4,200.

$$N_{RC} = \psi A f_d = 0.925 \times 53.8 \times 305 \times 10^{-1} = 1517.83 \text{ kN}$$

Określenie współczynników wyboczeniowych:

- dla
$$Nx$$
 $\overline{\lambda} = 1,15 \sqrt{N_{RC} / N_x} = 1,15 \times \sqrt{1517,83 / 9588,73} = 0,459 \implies \varphi = 0,978$

- dla Ny
$$\bar{\lambda} = 1,15\sqrt{NRC/Ny} = 1,15\times\sqrt{1517,83/692,77} = 1,709 \implies \varphi = 0,309$$

$$- \operatorname{dla} Nz \quad \overline{\lambda} = 1,15 \sqrt{N_{RC}/N_z} = 1,15 \times \sqrt{1517,83/1771,62} = 1,064 \implies \varphi = 0,526$$

Przyjęto: $\varphi = \varphi_{\min} = 0,309$

Warunek nośności pręta na ściskanie (39):

$$\frac{N}{\varphi N_{Rc}} = \frac{450,00}{0,309 \times 1517,83} = 0,959 < 1$$

Temat: Nośność górnego pasa wiązara dachowego na ściskanie.

Żródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów ściskanych osiowo według PN-90/B-03200, Inżynieria i Budownictwo Nr 1/91, Przykład 2.

Przekrój:

Wymiary przekroju: T 110x100 h=110,0 s=100,0 g=10,0 t=10,0 ey=32,5. Charakterystyka geometryczna przekroju: Jxg=235,4 Jyg=84,2 A=20,00 ix=3,4 iy=2,1 Jw=0,0 Jt=7,0 ys=-2,9 is=4,9 rx=2,2 by=-4,0. Materiał: **18G2**.

Wytrzymałość fd=305 MPa dla g=10,0.

Siły przekrojowe:

xa = 0,000; xb = 3,015.

Obciążenia działające w płaszczyźnie układu: A

$$N = -120,00 \text{ kN},$$

Naprężenia w skrajnych włóknach: $\sigma_t = -60,00$ MPa $\sigma_C = -60,00$ MPa.

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg załącznika 1 normy:

 $\begin{array}{ll} \chi_1=1,000,\,\chi_2=1,000 & \mbox{wezły nieprzesuwne} \implies \mu=1,000 & \mbox{dla} \ l_o=3,015 \\ l_w=1,000\times3,015=3,015 \ m \end{array}$

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu: $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 3,015$ $l_w = 1,000 \times 3,015 = 3,015$ m

- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 1,000$. Rozstaw stężeń zabezpieczających przed obrotem $l_{o\omega} = 3,015$ m. Długość wyboczeniowa $l_{\omega} = 3,015$ m.

Siły krytyczne:

$$N_x = \frac{\pi^2 EJ}{l_w^2} = \frac{3,14^2 \times 205 \times 235,4}{3,015^2} \ 10^{-2} = 523,98 \text{ kN}$$
$$N_y = \frac{\pi^2 EJ}{l_w^2} = \frac{3,14^2 \times 205 \times 84,2}{3,015^2} \ 10^{-2} = 187,34 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\varpi}}{l_{\varpi}^{2}} + GJ_{T} \right) = \frac{1}{4,9^{2}} \left(\frac{3,14^{2} \times 205 \times 0,0}{3,015^{2}} 10^{-2} + 80 \times 7,0 \times 10^{2} \right) = 2306,51 \text{ kN}$$

$$N_{yz} = \frac{N_{y} + N_{z} - \sqrt{\left(N_{y} + N_{z}\right)^{2} - 4N_{y} N_{z} \left(1 - \mu y_{s}^{2} / i_{s}^{2}\right)}}{2\left(1 - \mu y_{s}^{2} / i_{s}^{2}\right)} = \frac{187,34 + 2306,51 \cdot \sqrt{\left(187,34 + 2306,51\right)^{2} - 4 \times 187,34 \times 2306,51 \times (1 - 1,000 \times 2,9^{2} / 4,9^{2})}}{2 \times (1 - 1,000 \times 2,9^{2} / 4,9^{2})} = 182,00 \text{ kN}$$

Nośność przekroju na ściskanie:

xa = 0,000; xb = 3,015.

 $N_{RC} = \psi A f_d = 1,000 \times 20,0 \times 305 \times 10^{-1} = 610,00 \text{ kN}$

Określenie współczynników wyboczeniowych:

$$- \operatorname{dla} Nx \quad \overline{\lambda} = 1,15 \sqrt{N_{RC}/N_x} = 1,15 \times \sqrt{610,00/523,98} = 1,246 \implies \varphi = 0,438$$

$$- \text{dla } Ny \qquad \lambda = 1,15 \sqrt{N_{RC} / N_{y}} = 1,15 \times \sqrt{610,00 / 187,34} = 2,084 \implies \varphi = 0,202$$

- dla Nyz
$$\bar{\lambda} = 1,15 \sqrt{N_{RC}/N_{yz}} = 1,15 \times \sqrt{610,00/182,00} = 2,105 \Longrightarrow \qquad \varphi = 0,198$$

Przyjęto: $\varphi = \varphi_{\min} = 0,198$

Warunek nośności pręta na ściskanie (39):

$$\frac{N}{\varphi N_{Rc}} = \frac{120,00}{0,198 \times 610,00} = 0,994 < 1$$

Temat: Nośność słupa ramy - przekrój rurowy, kwadratowy.

Żródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów ściskanych osiowo według PN-90/B-03200, Inżynieria i Budownictwo Nr 1/91, Przykład 3.

Przekrój:

Wymiary przekroju: H 200x200x 4.0 h=200,0 s=200,0 g=4,0 t=4,0 r=0,0 vx=3,9 vy=3,9. Charakterystyka geometryczna przekroju: Jxg=1940,3 Jyg=1940,3 A=30,70 ix=8,0 iy=8,0. Materiał: **St3SX** Wytrzymałość **fd=215** MPa dla **g=4,0**.

Siły przekrojowe:

xa = 0,000; xb = 3,600./

Obciążenia działające w płaszczyźnie układu: A

N = -430,00 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = -140,07$ MPa $\sigma_C = -140,07$ MPa.

Stateczność lokalna:

xa = 0,000; xb = 3,600.

Przekrój spełnia warunki przekroju klasy 4.

W przekroju występują naprężenia spawalnicze.

Rura była walcowana na gorąco.

Rozstaw poprzecznych usztywnień ścianki a = 3600,0 mm.

Warunek stateczności ścianki dla ścianki najbardziej narażonej na jej utratę (9):

$$\sigma_{\rm C} / \varphi_{\rm p} f_{\rm d} = 0,852 < 1$$

Przyjęto, że przekrój wymiarowany będzie w stanie **krytycznym**. Współczynniki redukcji nośności przekroju:

- dla ściskania:

$$\psi_{\rm o} = \varphi_{\rm p} = 0,764$$

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto następujące podatności węzłów:

 $\chi_1 = 0,500, \ \chi_2 = 0,410$ węzły przesuwne $\Rightarrow \mu = 1,393$ dla $l_o = 3,600$ $l_w = 1,393 \times 3,600 = 5,015$ m

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

$$\chi_1 = 1,000, \chi_2 = 1,000$$
 węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 3,600$
 $l_w = 1,000 \times 3,600 = 3,600$ m

Siły krytyczne:

$$N_x = \frac{\pi^2 EJ}{l_w^2} = \frac{3,14^2 \times 205 \times 1940,3}{5,015^2} \ 10^{-2} = 1561,06 \text{ kN}$$
$$N_y = \frac{\pi^2 EJ}{l_w^2} = \frac{3,14^2 \times 205 \times 1940,3}{3,600^2} \ 10^{-2} = 3029,16 \text{ kN}$$

Nośność przekroju na ściskanie:

xa = 0,000; xb = 3,600.

$$N_{RC} = \psi A f_d = 0,764 \times 30,7 \times 215 \times 10^{-1} = 504,28 \text{ kN}$$

Określenie współczynników wyboczeniowych:
- dla Nx $\overline{\lambda} = 1,15 \sqrt{N_{RC} / N_x} = 1,15 \times \sqrt{504,28 / 1561,06} = 0,656 \Rightarrow \varphi = 0,866$
- dla Ny $\overline{\lambda} = 1,15 \sqrt{N_{RC} / N_y} = 1,15 \times \sqrt{504,28 / 3029,16} = 0,471 \Rightarrow \varphi = 0,948$
Przyjęto: $\varphi = \varphi_{\min} = 0,866$
Warunek nośności pręta na ściskanie (39):
 $\frac{N}{\varphi N_{Rc}} = \frac{430,00}{0,866 \times 504,28} = 0,985 < 1$

Temat: Nośność na ściskanie słupa wielogałęziowego.

Żródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów ściskanych osiowo według PN-90/B-03200, Inżynieria i Budownictwo Nr 1/91, Przykład 4.

Przekrój:

Wymiary przekroju: 2 U 160 h=160,0 s=65,0 g=7,5 t=10,5 r=0,0 ex=18,4.
Charakterystyka geometryczna przekroju: Jxg=4198,1 Jyg=1850,0 A=48,00 ix=9,4 iy=6,2.
Materiał: St3SX
Wytrzymałość fd=215 MPa dla g=10,5.
Siły przekrojowe:

xa = 0,000; xb = 6,000.

Obciążenia działające w płaszczyźnie układu: A

N = -150,00 kN,

Naprężenia w skrajnych włóknach:
$$\sigma_t = -31,25$$
 MPa $\sigma_C = -31,25$ MPa.

Połączenie gałęzi.

Przyjęto, że gałęzie połączone są przewiązkami o szerokości b = 100,0 mm i grubości g = 8,0 mm w odstępach $l_1 = 650,0$ mm, wykonanymi ze stali St3SX. Smukłość gałęzi:

 $\lambda_{\nu} = \lambda_{1} = \frac{1}{1} / \frac{1}{1} = \frac{650,0}{18,9} = \frac{34,39}{4}$ $\lambda_{p} = \frac{84}{\sqrt{215} / \frac{1}{fd}} = \frac{84}{\sqrt{215} / \frac{215}{215}} = \frac{84,00}{16}$

Współczynniki redukcji nośności:

Współczynnik niestateczności dla ścianki przy ściskaniu wynosi $\varphi_p = 1,000$. Współczynnik niestateczności gałęzi wynosi:

 $\overline{\lambda} = \lambda_1 / \lambda_p = 34,39 / 84,00 = 0,409 \implies \varphi_1 = 0,912.$ W związku z tym współczynniki redukcji nośności wynoszą: - dla ściskania: $\psi_0 = 0,912$

Smukłość zastępcza pręta:

- dla wyboczenia w płaszczyźnie prostopadłej do osi X

$$\lambda = l_{wx} / i_x = 12000,0 / 93,5 = 128,31$$
$$\lambda_m = \sqrt{\lambda^2 + \lambda_v^2 m / 2} = \sqrt{128,31^2 + 34,39^2} = 132,84$$
$$\overline{\lambda}_m = \frac{\lambda_m}{\lambda_p} \sqrt{\psi_0} = \frac{132,84}{84,00} \times \sqrt{0,912} = 1,510$$

PRZYKŁADY

Nośność przewiązek.

Przewiązki prostopadłe do osi X: $Q = 1,2 V = 1,2 \times 0,00 = 0,00 \text{ kN}$ $Q \ge 0,012 A f_d = 0,012 \times 48,00 \times 215 \times 10^{-1} = 12,38 \text{ kN}$ Przyjęto Q = 12,38 kN $V_Q = \frac{Q l_1}{n (m-1) a} = \frac{12,38 \times 650,0}{2 \times (2-1) \times 183,2} = 21,97 \text{ kN}$ $M_Q = \frac{Q l_1}{m n} = \frac{12,38 \times 0,7}{2 \times 2} = 2,01 \text{ kNm}$ $V_R = 0,58 \varphi_{PV} A_V f_d = 0,58 \times 1,000 \times 0,9 \times 100,0 \times 8,0 \times 215 \times 10^{-3} = 89,78 \text{ kN}$ $M_R = W f_d = 8,0 \times 100,0^2 / 6 \times 215 \times 10^{-6} = 2,87 \text{ kNm}$ $V_Q = 21,97 < 89,78 = V_R$ $M_Q = 2,01 < 2,87 = M_R$

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg zasad mechaniki:

 $\begin{array}{ll} \chi_1 = 0,000, \ \chi_2 = 1,000 & \mbox{wezły przesuwne} & \implies \mu = 2,000 & \mbox{dla } l_o = 6,000 \\ l_w = 2,000 \times 6,000 = 12,000 & \mbox{m} \end{array}$

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

$$\chi_1 = 0,000, \chi_2 = 1,000$$
 węzły przesuwne $\Rightarrow \mu = 2,000$ dla $l_0 = 6,000$
 $l_w = 2,000 \times 6,000 = 12,000$ m

Siły krytyczne:

$$N_x = \frac{\pi^2 EJ}{l_w^2} = \frac{3,14^2 \times 205 \times 4198,1}{12,000^2} \ 10^{-2} = 589,85 \text{ kN}$$
$$N_y = \frac{\pi^2 EJ}{l_w^2} = \frac{3,14^2 \times 205 \times 1850,0}{12,000^2} \ 10^{-2} = 259,93 \text{ kN}$$

Nośność przekroju na ściskanie:

xa = 0,000; xb = 6,000. $N_{RC} = \psi A f_d = 0,912 \times 48,0 \times 215 \times 10^{-1} = 941,18 \text{ kN}$ Określenie współczynników wyboczeniowych: $\lambda_p = 84 \sqrt{215 / f_d} = 84 \times \sqrt{215 / 215} = 84,00$ - dla wyboczenia prostopadłego do osi X: $\overline{\lambda} = \overline{\lambda}_m = 1,510 \Rightarrow \qquad \varphi = 0,378$ - dla wyboczenia prostopadłego do osi Y: $\lambda_y = l_{wy} / i_y = 12000,0 / 62,1 = 193,29$ $\overline{\lambda} = \lambda_y / \lambda_p = 193,29 / 84,00 = 2,301 \Rightarrow \qquad \varphi = 0,170$ Przyjęto: $\varphi = \varphi_{\min} = 0,170$ Warunek nośności pręta na ściskanie (39): $\frac{N}{\varphi N_{Rc}} = \frac{150,00}{,170 \times 941,18} = 0,937 < 1$

Temat: Nośność na zginanie belki wolnopodpartej.

Żródło: *J. Augustyn, J. Bródka, J. Łaguna*, Obliczanie prętów zginanych według PN-90/B-03200, Inżynieria i Budownictwo Nr 2/91, *Przykład 1*.

Przekrój:

Wymiary przekroju: I 300 PE h=300,0 g=7,1 s=150,0 t=10,7 r=0,0.
Charakterystyka geometryczna przekroju: Jxg=8360,0 Jyg=604,0 A=53,80 ix=12,5 iy=3,4 Jw=125934,1 Jt=18,8 is=12,9.
Materiał: St3SX
Wytrzymałość fd=215 MPa dla g=10,7.
Przekrój spełnia warunki przekroju klasy 1.

Siły przekrojowe:

xa = 3,000; xb = 3,000.

Obciążenia działające w płaszczyźnie układu: A

 $M_x = -112,50$ kNm, $V_y = 0,00$ kN, N = 0,00 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = 201,85$ MPa $\sigma_C = -201,85$ MPa.

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg załącznika 1 normy:

 $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 6,000$ $l_w = 1,000 \times 6,000 = 6,000$ m

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

 $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 2,000$

 $l_w = 1,000 \times 2,000 = 2,000 \text{ m}$

- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 1,000$. Rozstaw stężeń zabezpieczających przed obrotem $l_{o\omega} = 2,000$ m. Długość wyboczeniowa $l_{\omega} = 2,000$ m.

Siły krytyczne:

$$N_{x} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 8360,0}{6,000^{2}} \ 10^{-2} = 4698,48 \text{ kN}$$

$$N_{y} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 604,0}{2,000^{2}} \ 10^{-2} = 3055,14 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\overline{w}}}{l_{\overline{w}}^{2}} + GJ_{T} \right) =$$

$$\frac{1}{12,9^{2}} \left(\frac{3,14^{2} \times 205 \times 125934,1}{2,000^{2}} \ 10^{-2} + 80 \times 18,8 \times 10^{2} \right) = 4727,81 \text{ kN}$$

Zwichrzenie:

Dla dwuteownika walcowanego rozstaw stężeń zabezpieczających przekrój przed obrotem $l_1 = l_{o\omega} = 2000$ mm:

$$\frac{35 i_y}{\beta} \sqrt{215 / f_d} = \frac{35 \times 33}{1,000} \times \sqrt{215 / 215} = 1173 < 2000 = l_1$$

Pręt nie jest zabezpieczony przed zwichrzeniem.

Współrzędna punktu przyłożenia obciążenia $a_0 = 0,00$ cm. Różnica współrzędnych środka ścinania i punktu przyłożenia siły $a_s = 0,00$ cm. Przyjęto następujące wartości parametrów zwichrzenia: $A_1 = 1,000$, $A_2 = 0,000$, B = 1,000.

 $A_0 = A_1 b_y + A_2 a_s = 1,000 \times 0,00 + 0,000 \times 0,00 = 0,000$

 $M_{cr} = \pm A_o N_y + \sqrt{(A_o N_y)^2 + B^2 i_s^2 N_y N_z} =$

 $0,000 \times 3055,14 + \sqrt{(0,000 \times 3055,14)^2 + 1,000^2 \times 0,129^2 \times 3055,14 \times 4727,81} = 490,57$

Smukłość względna dla zwichrzenia wynosi:

 $\overline{\lambda}_L = 1,15 \sqrt{M_R / M_{cr}} = 1,15 \times \sqrt{127,45 / 490,57} = 0,586$

Nośność przekroju na zginanie:

xa = 3,000; xb = 3,000.

- względem osi X $M_{\rm R} = \alpha_{\rm p} W f_d = 1,064 \times 557,3 \times 215 \times 10^{-3} = 127,45 \text{ kNm}$ Współczynnik zwichrzenia dla $\lambda_L = 0,586$ wynosi $\varphi_L = 0,974$ Warunek nośności (54):

$$\frac{M_x}{\varphi_L M_{Rx}} = \frac{112,50}{0,974 \times 127,45} = 0,906 < 1$$

Nośność przekroju na ścinanie:

xa = 0,000; xb = 6,000. - wzdłuż osi Y $V_R = 0,58 A_V f_d = 0,58 \times 19,8 \times 215 \times 10^{-1} = 246,66 \text{ kN}$ $Vo = 0,6 V_R = 148,00 \text{ kN}$ Warunek nośności dla ścinania wzdłuż osi Y: $V = 75,00 < 246,66 = V_R$

Nośność przekroju zginanego, w którym działa siła poprzeczna:

xa = 3,000; xb = 3,000.

- dla zginania względem osi X: $V_{\rm v} = 0,00 < 148,00 = V_{\rm o}$ $M_{R,V} = M_R = 127,45$ kNm Warunek nośności (55):

$$\frac{M_x}{M_{R_x,V}} = \frac{112,50}{127,45} = 0,883 < 1$$

Nośność środnika pod obciążeniem skupionym:

xa = 0,000; xb = 6,000.

Przyjęto szerokość rozkładu obciążenia skupionego c = 0,0 mm.

Naprężenia ściskające w środniku wynoszą $\sigma_c = 0,00$ MPa. Współczynnik redukcji nośności wynosi:

 $\eta_{c} = 1,000$

Nośność środnika na siłę skupioną:

 $P_{R,W} = c_0 t_w \eta_c f_d = 53.5 \times 7.1 \times 1.000 \times 215 \times 10^{-3} = 81.67 \text{ kN}$ Warunek nośności środnika:

 $P = 75,00 < 81,67 = P_{R,W}$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą:

 $a_{gr} = l / 250 = 6000 / 250 = 24,0 \text{ mm}$ $a_{max} = 24,6 \text{ mm}$

 $a_{max} = 24, 6 > 24, 0 = a_{gr}$

Temat: Nośność spawanej belki wolnopodpartej na zginanie

Żródło: *J. Augustyn, J. Bródka, J. Łaguna*, Obliczanie prętów zginanych według PN-90/B-03200, Inżynieria i Budownictwo Nr 2/91, *Przykład 2*.

Schemat statyczny belki

Przekrój:

Wymiary przekroju: U 160 h=160,0 s=65,0 g=7,5 t=10,5 r=10,5 ex=18,4. Charakterystyka geometryczna przekroju: Jxg=1850,0 Jyg=1212,9 A=48,00 ix=6,2 iy=5,0. Materiał: **St3SX** Wytrzymałość **fd=215** MPa dla **g=10,5**. Przekrój spełnia warunki przekroju klasy **1**.

Siły przekrojowe:

xa = 3,000; xb = 3,000.

Obciążenia działające w płaszczyźnie układu: A

Obciążenia działające prostopadle do płaszczyzny układu: momenty przywęzłowe $M_a = 4,00$ i $M_b = 4,00$ kNm, obciążenie rozłożone na całej długości pręta q = 0,00 kN/m. Częściowy współczynnik bezpieczeństwa dla tych obciążeń wynosi $\gamma_f = 1,000$.

$$\begin{split} \mathbf{M}_x &= \textbf{-38,25} \text{ kNm}, \qquad \mathbf{V}_y &= \textbf{0,00} \text{ kN}, \ \mathbf{N} &= \textbf{0,00} \text{ kN}, \\ \mathbf{M}_y &= \textbf{4,00} \text{ kNm}, \qquad \mathbf{V}_x &= \textbf{0,00} \text{ kN}. \end{split}$$

Naprężenia w skrajnych włóknach: $\sigma_t = 186,84$ MPa $\sigma_C = -186,84$ MPa.

Zwichrzenie:

Dla przekroju rurowego lub skrzynkowego rozstaw stężeń zabezpieczających przekrój przed obrotem $l_1 = l_{\omega} = 6000$ mm:

$$100 b_o \sqrt{215/f_d} = 100 \times 122,5 \times \sqrt{215/215} = 12250 > 6000 = l_d$$

Pręt jest zabezpieczony przed zwichrzeniem.

Nośność przekroju na zginanie:

xa = 3,000; xb = 3,000.

 $M_{\rm R} = \alpha_{\rm p} W f_d = 1,087 \times 231,3 \times 215 \times 10^{-3} = 54,05 \text{ kNm}$ - względem osi X: $M_{\rm R} = \alpha_{\rm p} W f_d = 1,099 \times 186,6 \times 215 \times 10^{-3} = 44,11 \text{ kNm}$ - względem osi Y: Współczynnik zwichrzenia dla $\lambda_L = 0,000$ wynosi $\varphi_L = 1,000$ Warunek nośności (54):

$$\frac{M_x}{\varphi_L M_{Rx}} + \frac{M_y}{M_{Ry}} = \frac{38,25}{1,000 \times 54,05} + \frac{4,00}{44,11} = 0,798 < 1$$

Nośność przekroju na ścinanie:

xa = 0,000; xb = 6,000.

 wzdłuż osi Y: 	$V_R = 0.58 A_V f_d = 0.58 \times 24,0 \times 215 \times 10^{-1} = 299,28 \text{ kN}$
	$Vo = 0.3 V_R = 89.78 \text{ kN}$
 wzdłuż osi X: 	$V_R = 0.58 A_V f_d = 0.58 \times 24.1 \times 215 \times 10^{-1} = 301.15 \text{ kN}$
	$Vo = 0.3 V_R = 90.35 \text{ kN}$
Warunki nośności	i:

- ścinanie wzdłuż osi Y: $V = 25,50 < 299,28 = V_R$ - ścinanie wzdłuż osi X:

 $V = 0.00 < 301.15 = V_R$

Nośność przekroju zginanego, w którym działa siła poprzeczna:

```
xa = 3,000; xb = 3,000.
```

- dla zginania względem osi X: $V_v = 0.00 < 89.78 = V_0$ $M_{R,V} = M_R = 54,05 \text{ kNm}$ - dla zginania względem osi Y: $V_x = 0,00 < 90,35 = V_0$ $M_{R,V} = M_R = 44,11$ kNm

Warunek nośności (55):

$$\frac{M_x}{M_{Rx,V}} + \frac{M_y}{M_{Ry,V}} = \frac{38,25}{54,05} + \frac{4,00}{44,11} = 0,798 < 1$$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą: $a_{max} = 37,8 \text{ mm}, a_{gr} = l / 150 = 6000 / 150 = 40,0 \text{ mm}$ $a_{max} = 37,8 < 40,0 = a_{gr}$ Ugięcia względem osi X liczone od cięciwy pręta wynoszą: $a_{max} = 7,2 \text{ mm}$, $a_{gr} = l / 350 = 6000 / 350 = 17,1 \text{ mm}$ $a_{max} = 7,2 < 17,1 = a_{gr}$ Największe ugięcie wypadkowe wynosi: $a = \sqrt{7.2^2 + 37.8^2} = 38.5$

Temat: Nośność belki wspornikowej na zginanie

Żródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów zginanych według PN-90/B-03200, Inżynieria i Budownictwo Nr 2/91, Przykład 3.

Schemat statyczny belki

Wymiary przekroju: S 820x400 h=820,0 g=6,0 s=400,0 t=10,0. Charakterystyka geometryczna przekroju: Jxg=156826,7 Jyg=10668,1 A=128,00 ix=35,0 iy=9,1 Jw=1,750E+07 Jt=32,5 is=36,2. Materiał: St4VX. Wytrzymałość fd=235 MPa dla g=10,0.

Siły przekrojowe:

xa = 0,000; xb = 3,000.

Obciążenia działające w płaszczyźnie układu: A

 $M_x = 600,00$ kNm, $V_y = 200,00$ kN, N = 0,00 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = 156,86$ MPa $\sigma_C = -156,86$ MPa.

Stateczność lokalna.

xa = 0,000; xb = 3,000.

Przekrój spełnia warunki przekroju klasy 4.

Rozstaw poprzecznych usztywnień ścianki a = 750,0 mm.

Warunek stateczności ścianki dla ścianki najbardziej narażonej na jej utratę (9):

$$\sigma_{\rm C} / \varphi_{\rm p} f_{\rm d} = 0.965 < 1$$

Przyjęto, że przekrój wymiarowany będzie w stanie **nadkrytycznym ograniczonym**.

Współczynniki redukcji nośności przekroju:

- dla zginana względem osi X:

 $\varphi_{\rm p} = 0.803$ $W_{\rm ec} = 3286.05$ $W_{\rm c} = 3825.04$ cm³

 $\psi_{\rm x} = \varphi_{\rm p} W_{\rm ec} / W_{\rm c} = 0.803 \times 3286.05 / 3825.04 = 0.690$
Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg zasad mechaniki:

$$\chi_1 = 0,000, \chi_2 = 1,000$$
 węzły przesuwne $\Rightarrow \mu = 2,000$ dla $l_0 = 3,000$
 $l_w = 2,000 \times 3,000 = 6,000$ m

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

 $\chi_1 = 0,000, \chi_2 = 1,000$ węzły przesuwne $\Rightarrow \mu = 2,000$ dla $l_0 = 3,000$ $l_w = 2,000 \times 3,000 = 6,000$ m

- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 2,000$. Rozstaw stężeń zabezpieczających przed obrotem $l_{\omega} = 3,000$ m. Długość wyboczeniowa $l_{\omega} = 6,000$ m.

Siły krytyczne:

$$N_{x} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 156826,7}{6,000^{2}} 10^{-2} = 88139,59 \text{ kN}$$

$$N_{y} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 10668,1}{6,000^{2}} 10^{-2} = 5995,68 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\overline{w}}}{l_{\overline{w}}^{2}} + GJ_{T} \right) =$$

$$\frac{1}{36,2^{2}} \left(\frac{3,14^{2} \times 205 \times 1,75E + 07}{6,000^{2}} 10^{-2} + 80 \times 32,5 \times 10^{2} \right) = 7713,16 \text{ kN}$$

Zwichrzenie:

Współrzędna punktu przyłożenia obciążenia $a_0 = 41,00$ cm. Różnica współrzędnych środka ścinania i punktu przyłożenia siły $a_s = 41,00$ cm. Przyjęto następujące wartości parametrów zwichrzenia: $A_1 = 0,000$, $A_2 = 1,100$, B = 2,560.

$$A_0 = A_1 b_y + A_2 a_s = 0,000 \times 0,00 + 1,100 \times 41,00 = 45,100$$

$$M_{cr} = \pm A_o N_y + \sqrt{(A_o N_y)^2 + B^2 i_s^2 N_y N_z} =$$

$$0,451 \times 5995,68 + \sqrt{(0,451 \times 5995,68)^2 + 2,560^2 \times 0,362^2 \times 5995,68 \times 7713,16^2 = 9557,58}$$

Smukłość względna dla zwichrzenia wynosi:

 $\overline{\lambda}_L = 1,15 \sqrt{M_R / M_{cr}} = 1,15 \times \sqrt{620,23 / 9557,58} = 0,293$

Nośność przekroju na zginanie:

xa = 0,000; xb = 3,000.

- względem osi X

 $M_{\rm R} = \psi W_c f_d = 0,690 \times 3825, 0 \times 235 \times 10^{-3} = 620,23 \text{ kNm}$

Współczynnik zwichrzenia dla $\lambda_L = 0,293$ wynosi $\varphi_L = 0,996$ Warunek nośności (54):

$$\frac{M_x}{\wp_L M_{Rx}} = \frac{600,00}{0,996 \times 620,23} = 0,971 < 1$$

Nośność przekroju na ścinanie:

xa = 0,000; xb = 3,000.

PRZYKŁADY

- wzdłuż osi Y

 $V_R = 0,58 \ \varphi_{pv} A_V f_d = 0,58 \times 0,640 \times 48,0 \times 235 \times 10^{-1} = 418,43 \text{ kN}$ $Vo = 0.3 V_R = 125.53 \text{ kN}$

Warunek nośności dla ścinania wzdłuż osi Y: V

$$V = 200,00 < 418,43 = V_R$$

Nośność przekroju zginanego, w którym działa siła poprzeczna:

xa = 0,000; xb = 3,000.

- dla zginania względem osi X: $V_v = 200,00 > 125,53 = V_o$

$$M_{R,V} = M_R \left[1 - \frac{I_{(V)}}{I} \left(\frac{V}{V_R} \right)^2 \right] = 620,23 \times \left[1 - \frac{25600,0}{156826,7} \left(\frac{200,0}{418,4} \right)^2 \right] = 597,10 \text{ kNm}$$

Warunek nośności (55):

$$\frac{M_x}{M_{Rx,V}} = \frac{600,00}{597,10} = 1,005 > 1$$

Nośność środnika pod obciążeniem skupionym:

xa = 0,000; xb = 3,000.

Przyjęto szerokość rozkładu obciażenia skupionego c = 0,0 mm. Dodatkowe usztywnienie środnika przyjęto o rozstawie $a_1 = 750,0$ mm.

$$k_{c} = (15 + 25\frac{c_{o}}{h_{w}})\sqrt{\frac{t_{f}\ 215}{t_{w}}f_{d}} = (15 + 25 \times \frac{20,0}{800,0}) \times \sqrt{\frac{10,0 \times 215}{6,0 \times 235}} = 19,294$$

$$k_{c} \le c_{o} / t_{w} = 20,0 / 6,0 = 3,333$$

Przyjęto $k_{c} = 3,333$

Warunek dodatkowy:

$$k_c \le 20 \sqrt{\frac{215}{f_d}} = 20 \times \sqrt{\frac{215}{235}} = 19,130$$

Siła może zmieniać położenie na pręcie.

Naprężenia ściskające w środniku wynoszą $\sigma_c = 153,04$ MPa. Współczynnik redukcji nośności wynosi:

 $\eta_c = 1,25 - 0,5 \sigma_c / f_d = 1,25 - 0,5 \times 153,04 / 235 = 0,924$ Nośność środnika na siłę skupioną:

 $P_{Rc} = k_c t_w^2 \eta_c f_d = 3.333 \times (6.0)^2 \times 0.924 \times 235 \times 10^{-3} = 26.07 \text{ kN}$ Warunek nośności środnika:

 $P = 0.00 < 26.07 = P_{R.c}$

Złożony stan środnika

xa = 0,000; xb = 3,000.

Siły przekrojowe przypadające na środnik i nośności środnika:

= 0,00	$N_{\rm Rw}$	= 611,38	kN
= 97,94	$M_{ m Rw}$	= 103,78	kNm
= 200,00	V_{R}	= 418,43	kN
= 0,00	$P_{\rm Rc}$	= 26,07	kN
	= 0,00 = 97,94 = 200,00 = 0,00		

Przyjęto, że zastosowane zostaną żebra w miejscu występowania siły skupionej (P = 0).

Współczynnik niestateczności ścianki wynosi: $\varphi_p = 0,803$.

P-16

Warunek nośności środnika:

$$\left(\frac{N_w}{N_{Rw}} + \frac{M_W}{M_{Rw}} + \frac{P}{P_{Rc}}\right)^2 - 3\varphi_P\left(\frac{N_w}{N_{Rw}} + \frac{M_W}{M_{Rw}}\right)\frac{P}{P_{Rc}} + \left(\frac{V}{V_R}\right)^2 = \left(\frac{0.00}{611.38} + \frac{97.94}{103.78} + \frac{0.00}{26.07}\right)^2 - 3\times0.803\times\left(\frac{0.00}{611.38} + \frac{97.94}{103.78}\right)\frac{0.00}{26.07} + \left(\frac{200.00}{418.43}\right)^2 = 1,119 > 1$$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą:

 $a_{max} = 1,1 \text{ mm}$, $a_{gr} = l / 350 = 3000 / 350 = 8,6 \text{ mm}$ $a_{max} = 1,1 < 8,6 = a_{gr}$

Przykład 8

- Temat: Nośność słupa ściskanego i zginanego
- Żródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów ściskanych i zginanych według PN-90/B-03200, Inżynieria i Budownictwo Nr 3/91, Przykład 1.

Przekrój:

Wymiary przekroju: I 300 PE h=300,0 g=7,1 s=150,0 t=10,7 r=0,0.
Charakterystyka geometryczna przekroju: Jxg=8360,0 Jyg=604,0 A=53,80 ix=12,5 iy=3,4 Jw=125934,1 Jt=18,8 is=12,9.
Materiał: St3SY.
Wytrzymałość fd=215 MPa dla g=10,7.

Siły przekrojowe:

xa = 0,000; xb = 7,200. Obciążenia działające w płaszczyźnie układu: **AB**

P-18

 $M_x = 52,6$ kNm, $V_y = 38,1$ kN, N = -155,0 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = 65,7$ MPa $\sigma_C = -123,3$ MPa.

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto następujące podatności węzłów:

 $\begin{array}{ll} \chi_1=0,000,\,\chi_2=1,000 \quad \chi_V=0,235 \quad \Rightarrow \quad \mu=1,397 \qquad dla \ l_o=7,200 \\ l_w=1,397\times7,200=10,058 \ m \end{array}$

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

 $\chi_1 = 0,000, \ \chi_2 = 0,000$ węzły nieprzesuwne $\Rightarrow \mu = 0,500$ dla $l_o = 7,200$ $l_w = 0,500 \times 7,200 = 3,600$ m

- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 0,500$. Rozstaw stężeń zabezpieczających przed obrotem $l_{\omega} = 7,200$ m. Długość wyboczeniowa $l_{\omega} = 3,600$ m.

Siły krytyczne:

$$N_{x} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 8360,0}{10,058^{2}} 10^{-2} = 1671,9 \text{ kN}$$

$$N_{y} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 604,0}{3,600^{2}} 10^{-2} = 942,9 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\overline{w}}}{l_{\overline{w}}^{2}} + GJ_{T}\right) =$$

$$\frac{1}{12,9^{2}} \left(\frac{3,14^{2} \times 205 \times 125934,1}{3,600^{2}} 10^{-2} + 80 \times 18,8 \times 10^{2}\right) = 2084,7 \text{ kN}$$

Nośność przekroju na ściskanie:

 $N_{RC} = \psi A f_d = 1,000 \times 53,8 \times 215 \times 10^{-1} = 1156,7$ kN Określenie współczynników wyboczeniowych:

- dla Nx $\overline{\lambda} = 1.15 \sqrt{N_{RC}/N_x} = 1.15 \times \sqrt{1156.7/1671.9} = 0.961 \implies \varphi = 0.735$

- dla Ny
$$\bar{\lambda} = 1,15\sqrt{N_{RC}/N_{y}} = 1,15\times\sqrt{1156,7/942,9} = 1,279 \implies \varphi = 0,484$$

- dla
$$Nz$$
 $\lambda = 1,15\sqrt{Nrc}/Nz = 1,15\times\sqrt{1156,7/2084,7} = 0,857 \Rightarrow \varphi = 0,646$

Przyjęto:
$$\varphi = \varphi_{\min} = 0,484$$

Warunek nośności pręta na ściskanie (39):

$$\frac{N}{\varphi N_{Rc}} = \frac{155,0}{0,484 \times 1156,7} = 0,277 < 1$$

Zwichrzenie:

Dla dwuteownika walcowanego rozstaw stężeń zabezpieczających przekrój przed obrotem $l_1 = l_{o\omega} = 7200$ mm:

$$\frac{35\,i_y}{\beta}\sqrt{215\,/\,f_d} = \frac{35\times33}{1,000} \times \sqrt{215\,/\,215} = 1173 < 7200 = l_1$$

Pręt nie jest zabezpieczony przed zwichrzeniem.

Współrzędna punktu przyłożenia obciążenia $a_0 = 0,00$ cm. Różnica współrzędnych środka ścinania i punktu przyłożenia siły $a_s = 0,00$ cm. Przyjęto następujące wartości parametrów zwichrzenia: $A_1 = 1,000, A_2 = 0,000, B = 1,000.$ $A_2 = A_1, b_2 + A_2, a_3 = 1,000 \times 0,000 + 0,000 \times 0,000 = 0,000$

$$M_{cr} = \pm A_o N_y + \sqrt{(A_o N_y)^2 + B^2 ls^2 N_y N_z} =$$

 $0,000 \times 942,9 + \sqrt{(0,000 \times 942,9)^2 + 1,000^2 \times 0,129^2 \times 942,9 \times 2084,7} = 181,0$

Smukłość względna dla zwichrzenia wynosi:

$$\overline{\lambda}_L = 1,15 \sqrt{M_R / M_{cr}} = 1,15 \times \sqrt{119,8 / 181,0} = 0,936$$

Nośność przekroju na zginanie:

xa = 0,000; xb = 7,200.

- względem osi X:

 $M_{\rm R} = \psi W_c f_d = 1,000 \times 557,3 \times 215 \times 10^{-3} = 119,8 \text{ kNm}$

Współczynnik zwichrzenia dla $\lambda_L = 0,936$ wynosi $\varphi_L = 0,805$ Warunek nośności (54):

$$\frac{N}{N_{Rc}} + \frac{M_x}{\rho_L M_{Rx}} = \frac{155,0}{1156,7} + \frac{52,6}{0,805 \times 119,8} = 0,680 < 1$$

Nośność (stateczność) pręta ściskanego i zginanego:

Składnik poprawkowy:

$$M_{x \max} = 52,6 \text{ kNm} \qquad \beta_x = 1,000$$

$$\Delta_x = 1,25 \varphi_x \,\overline{\lambda_x}^2 \, \frac{\beta_x \, M_{x \max}}{M_{Rx}} \frac{N}{N_{Rc}} = 1,25 \times 0,735 \times 0,961^2 \frac{1,000 \times 52,6}{119,8} \times \frac{155,0}{1156,7} = 0,050$$

$$\Delta_x = 0,050 \qquad M_{y \max} = 0 \qquad \Delta_y = 0$$

Warunki nośności (58):

- dla wyboczenia względem osi X:

$$\frac{N}{\varphi_{x} N_{Rc}} + \frac{\beta_{x} M_{x \max}}{\varphi_{L} M_{Rx}} = \frac{155,0}{0,735 \times 1156,7} + \frac{1,000 \times 52,6}{0,805 \times 119,8} = 0,728 < 0,950 = 1 - 0,050$$

- dla wyboczenia względem osi Y:

$$\frac{N}{\varphi_{Y}} \frac{\beta_{x}}{N_{Rc}} + \frac{\beta_{x}}{\varphi_{L}} \frac{M_{x}}{M_{Rx}} = \frac{155,0}{0,484 \times 1156,7} + \frac{1,000 \times 52,6}{0,805 \times 119,8} = 0,823 < 1,000 = 1 - 0,000$$

Nośność przekroju na ścinanie:

xa = 0,000; xb = 7,200. - wzdłuż osi Y $V_R = 0,58 A_V f_d = 0,58 \times 19,8 \times 215 \times 10^{-1} = 246,7 \text{ kN}$ $Vo = 0,3 V_R = 74,0 \text{ kN}$ Warunek nośności dla ścinania wzdłuż osi Y: $V = 38,1 < 246,7 = V_R$

Nośność przekroju zginanego, w którym działa siła poprzeczna:

xa = 0,000; xb = 7,200. - dla zginania względem osi X: $V_y = 38,1 < 74,0 = V_o$ $M_{R,V} = M_R = 119,8$ kNm Warunek nośności (55):

$$\frac{N}{N_{Rc}} + \frac{M_x}{M_{Rx,V}} = \frac{155,0}{1156,7} + \frac{52,6}{119,8} = 0,573 < 1$$

Nośność przekroju na ścinanie z uwzględnieniem siły osiowej:

xa = 0,000, xb = 7,200.

- dla ścinania wzdłuż osi Y:

$$V = 38, 1 < 244, 4 = 246, 7 \times \sqrt{1 - (155, 0 / 1156, 7)^2} = V_R \sqrt{1 - (N/N_{Rc})^2} = V_{R, N}$$

PRZYKŁADY

Przykład 9

Temat: Nośność słupa wielogałęziowego - ściskanego i zginanego

Żródło: J. Augustyn, J. Bródka, J. Łaguna, Obliczanie prętów ściskanych i zginanych według PN-90/B-03200, Inżynieria i Budownictwo Nr 3/91, Przykład 3.

Schemat statyczny słupa

Przekrój:

Siły przekrojowe:

xa = 4,800; xb = 2,400. Obciążenia działające w płaszczyźnie układu: AHVW $M_x = 26,3$ kNm, $V_y = -3,0$ kN, N = -111,9 kN, Naprężenia w skrajnych włóknach: $\sigma_t = 30,8$ MPa $\sigma_c = -96,7$ MPa.

Połączenie gałęzi:

P-22

Przyjęto, że gałęzie połączone są przewiązkami o szerokości b = 100,0 mm i grubości g = 8,0 mm w odstępach $l_1 = 570,0$ mm, wykonanymi ze stali St3SY. Smukłość gałęzi:

$$\lambda_{\nu} = \lambda_{1} = l_{1} / i_{1} = 570,0 / 15,9 = 35,85$$
$$\lambda_{p} = 84 \sqrt{215 / f_{d}} = 84 \times \sqrt{215 / 215} = 84,00$$

Współczynniki redukcji nośności:

Współczynnik niestateczności dla ścianki przy ściskaniu wynosi $\varphi_p = 1,000$. Współczynnik niestateczności gałęzi wynosi:

 $\overline{\lambda} = \lambda_1 / \lambda_p = 35,85 / 84,00 = 0,427 \implies \varphi_1 = 0,903.$

W związku z tym współczynniki redukcji nośności wynoszą:

- dla zginana względem osi X: $\psi_x = 0.903$
- dla ściskania: $\psi_o = 0,903$

Smukłość zastępcza pręta:

- dla wyboczenia w płaszczyźnie prostopadłej do osi X

$$\lambda = l_{wx} / i_x = 7200,0 / 134,9 = 53,36$$
$$\lambda_m = \sqrt{\lambda^2 + \lambda_v^2} m / 2 = \sqrt{53,36^2 + 35,85^2} = 64,28$$
$$\overline{\lambda}_m = \frac{\lambda_m}{\lambda_p} \sqrt{\psi_0} = \frac{64,28}{84,00} \times \sqrt{0,903} = 0,727$$

Nośność przewiązek.

xa = 0,000; xb = 7,200.

Przewiązki prostopadłe do osi X:

 $Q = 1,2 \ V = 1,2 \times 8,0 = 9,6 \ \text{kN}$ $Q \ge 0,012 \ A \ f_d = 0,012 \times 34,00 \times 215 \times 10^{-1} = 8,8 \ \text{kN}$ Przyjęto Q = 9,6 kN $V_Q = \frac{Q \ \text{li}}{n \ (m-1) \ a} = \frac{9,6 \times 570,0}{2 \times (2-1) \times 268,0} = 10,2 \ \text{kN}$ $M_Q = \frac{Q \ \text{li}}{m \ n} = \frac{9,6 \times 0,6}{2 \times 2} = 1,4 \ \text{kNm}$ $V_R = 0,58 \ \varphi_{pv} \ A_v \ f_d = 0,58 \times 1,000 \times 0,9 \times 100,0 \times 8,0 \times 215 \times 10^{-3} = 89,8 \ \text{kN}$

 $M_R = W f_d = 8.0 \times 100.0^2 / 6 \times 215 \times 10^{-6} = 2.9 \text{ kNm}$

 $V_{\rm Q} = 10,2 < 89,8 = V_R$ $M_{\rm Q} = 1,4 < 2,9 = M_R$

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg załącznika 1 normy:

$$\chi_1 = 1,000, \chi_2 = 1,000$$
 węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 7,200$
 $l_w = 1,000 \times 7,200 = 7,200$ m

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

 $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 7,200$

$$l_w = 1,000 \times 7,200 = 7,200 \text{ m}$$

Siły krytyczne:

$$N_x = \frac{\pi^2 EJ}{l_w^2} = \frac{3,142 \times 205 \times 6191,4}{7,200^2} \ 10^{-2} = 2416,5 \text{ kN}$$
$$N_y = \frac{\pi^2 EJ}{l_w^2} = \frac{3,142 \times 205 \times 728,0}{7,200^2} \ 10^{-2} = 284,1 \text{ kN}$$

Nośność przekroju na ściskanie:

xa = 0,000; xb = 7,200. $N_{RC} = \psi A f_d = 0.903 \times 34.0 \times 215 \times 10^{-1} = 660.1 \text{ kN}$ Określenie współczynników wyboczeniowych: $\lambda_p = 84 \sqrt{215 / f_d} = 84 \times \sqrt{215 / 215} = 84,00$ - dla wyboczenia prostopadłego do osi X: $\overline{\lambda} = \overline{\lambda}_m = 0.727 \Rightarrow \varphi = 0.825$ - dla wyboczenia prostopadłego do osi Y: $\lambda_y = l_{wy} / i_y = 7200.0 / 46.3 = 155.60$ $\overline{\lambda} = \lambda_y / \lambda_p = 155.60 / 84.00 = 1.852 \Rightarrow \varphi = 0.246$ Przyjęto: $\varphi = \varphi_{min} = 0.246$ Warunek nośności pręta na ściskanie (39):

$$\frac{N}{\varphi N_{Rc}} = \frac{111.9}{0.246 \times 660.1} = 0.689 < 1$$

Nośność przekroju na zginanie:

xa = 4,800; xb = 2,400. - względem osi X: $M_{\rm R} = \psi W_c f_d = 0,903 \times 412,8 \times 215 \times 10^{-3} = 80,1 \text{ kNm}$ Współczynnik zwichrzenia dla $\lambda_L = 0,000$ wynosi $\varphi_L = 1,000$ Warunek nośności (54):

$$\frac{N}{N_{Rc}} + \frac{M_x}{\varphi_L M_{Rx}} = \frac{111.9}{660.1} + \frac{26.3}{1,000 \times 80.1} = 0.498 < 1$$

Nośność (stateczność) pręta ściskanego i zginanego:

Składnik poprawkowy: $M_{x \max} = 26,3 \text{ kNm}$ $\beta_x = 0.946$ $\Delta_x = 1,25 \varphi_x \overline{\lambda_x}^2 \frac{\beta_x M_{x \max}}{M_{Rx}} \frac{N}{N_{Rc}} = 1,25 \times 0,825 \times 0,727^2 \frac{0.946 \times 26,3}{80,1} \times \frac{111.9}{660,1} = 0,029$ $\Delta_x = 0,029$ $M_{y \max} = 0$ $\Delta_y = 0$ Warunki nośności (58): - dla wyboczenia względem osi X: $\frac{N}{\varphi_x N_{Rc}} + \frac{\beta_x M_{x \max}}{\varphi_L M_{Rx}} = \frac{111.9}{0,825 \times 660,1} + \frac{0.946 \times 26,3}{1,000 \times 80,1} = 0,516 < 0,971 = 1 - 0,029$ - dla wyboczenia względem osi Y: $\frac{N}{\varphi_y N_{Rc}} + \frac{\beta_x M_{x \max}}{\varphi_L M_{Rx}} = \frac{111.9}{0,246 \times 660,1} + \frac{0.946 \times 26,3}{1,000 \times 80,1} = 1,000 < 1,000 = 1 - 0,000$

Przykład 10

Temat: Blachownica spawana o przekroju klasy 4

Żródło: *J. Bródka*, Przykład obliczania blachownicy spawanej o przekroju klasy 4, Konstrukcje Stalowe Nr 3, luty 1995.

Wymiary przekroju:

h=800,0 g=7,0 s=250,0 t=10,0.

Charakterystyka geometryczna przekroju:

Jxg=105698,9 Jyg=2606,4 A=104,60

Jw=4063151,0, Jt=25,7 is=32,2.

Materiał: St3S.

Wytrzymałość fd=215 MPa dla g=10,0.

Siły przekrojowe:

xa = 6,000; xb = 6,000.

Obciążenia działające w płaszczyźnie układu: A

 $M_x = -500,8$ kNm, $V_y = 27,0$ kN, N = 0,0 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = 189,5$ MPa $\sigma_C = -189,5$ MPa.

Stateczność lokalna:

xa = 6,000; xb = 6,000.

Przekrój spełnia warunki przekroju klasy 4.

Rozstaw poprzecznych usztywnień ścianki a = 2000,0 mm.

Warunek stateczności ścianki dla ścianki najbardziej narażonej na jej utratę (9): $\sigma_0 / \alpha_0 f_1 = 0.895 < 1$

$$\sigma_{\rm C} / \varphi_{\rm p} f_{\rm d} = 0.895 < 1$$

Przyjęto, że przekrój wymiarowany będzie w stanie **nadkrytycznym ograniczonym**.

Współczynniki redukcji nośności przekroju:

- dla zginana względem osi X:

 $\varphi_{\rm p} = 1,000$ $W_{\rm ec} = 2609,3$ $W_{\rm c} = 2642,5 \ {\rm cm}^3$

RM-STAL

PRZYKŁADY

 $\psi_{\rm x} = \varphi_{\rm p} W_{\rm ec} / W_{\rm c} = 1,000 \times 2609,3 / 2642,5 = 0,987$

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg załącznika 1 normy:

 $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_o = 12,000$ $l_w = 1,000 \times 12,000 = 12,000$ m

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu: $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_0 = 12,000$

 $\chi_2 = 1,000$ weight mepizes when $\Rightarrow \mu = 1,000$ dia $l_w = 1,000 \times 12,000 = 12,000$ m

- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 1,000$. Rozstaw stężeń zabezpieczających przed obrotem $l_{o\omega} = 2,000$ m. Długość wyboczeniowa $l_{\omega} = 2,000$ m.

Siły krytyczne:

$$N_{x} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 105698,9}{12,000^{2}} \ 10^{-2} = 14851,2 \text{ kN}$$

$$N_{y} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 2606,4}{12,000^{2}} \ 10^{-2} = 366,2 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\varpi}}{l_{\varpi}^{2}} + GJ_{T} \right) =$$

$$\frac{1}{32,2^{2}} \left(\frac{3,14^{2} \times 205 \times 4,06E + 06}{2,000^{2}} \ 10^{-2} + 80 \times 25,7 \times 10^{2} \right) = 20047,6 \text{ kN}$$

Zwichrzenie:

Współrzędna punktu przyłożenia obciążenia $a_0 = 0,00$ cm. Różnica współrzędnych środka ścinania i punktu przyłożenia siły $a_s = 0,00$ cm. Przyjęto następujące wartości parametrów zwichrzenia: $A_1 = 0,000$, $A_2 = 0,000$, B = 1,000.

$$A_{o} = A_{1} b_{y} + A_{2} a_{s} = 0,000 \times 0,00 + 0,000 \times 0,00 = 0,000$$
$$M_{cr} = \pm A_{o} N_{y} + \sqrt{(A_{o} N_{y})^{2} + B^{2} i_{s}^{2} N_{y} N_{z}} = 0,000 \times 366,2 + \sqrt{(0,000 \times 366,2)^{2} + 1,000^{2} \times 0,322^{2} \times 366,2 \times 20047,6} = 871,9$$

Smukłość względna dla zwichrzenia wynosi:

 $\overline{\lambda}_L = 1.15 \sqrt{M_R / M_{cr}} = 1.15 \times \sqrt{560.7 / 871.9} = 0.922$

Nośność przekroju na zginanie:

xa = 6,000; xb = 6,000. - względem osi X $M_{\rm R} = \psi W_c f_d = 0.987 \times 2642.5 \times 215 \times 10^{-3} = 560.7$ kNm Współczynnik zwichrzenia dla $\lambda_L = 0.922$, przy założeniu spawania zmechanizowanego, wynosi $\varphi_L = 0.815$ Warunek nośności (54):

 $\frac{M_x}{\varphi_L \ M_{Rx}} = \frac{500,8}{0,815 \times 560,7} = 1,096 > 1$

Nośność przekroju na ścinanie:

xa = 0,000; xb = 12,000. - wzdłuż osi Y $V_R = 0,58 \ \varphi_{pv} A_V f_d = 0,58 \times 0,628 \times 54,6 \times 215 \times 10^{-1} = 427,7 \text{ kN}$ $Vo = 0,3 \ V_R = 128,3 \text{ kN}$ Warunek nośności dla ścinania wzdłuż osi Y:

 $V = 139,9 < 427,7 = V_R$

Nośność przekroju zginanego, w którym działa siła poprzeczna:

xa = 6,000; xb = 6,000.

- dla zginania względem osi X:

$$V_y = 27,0 < 128,3 = V_o, \quad M_{R,V} = M_R = 560,7 \text{ kNm}$$

Warunek nośności (55):

$$\frac{M_x}{M_{Rx,V}} = \frac{500,8}{560,7} = 0,893 < 1$$

Nośność środnika pod obciążeniem skupionym:

xa = 0,000; xb = 12,000.

Przyjęto szerokość rozkładu obciążenia skupionego c = 180,0 mm. Dodatkowe usztywnienie środnika przyjęto o rozstawie $a_1 = 2000,0$ mm.

$$k_{c} = (15 + 25\frac{c_{o}}{h_{w}}) \sqrt{\frac{t_{f} 215}{t_{w} f_{d}}} = (15 + 25 \times \frac{200,0}{780,0}) \times \sqrt{\frac{10,0 \times 215}{7,0 \times 215}} = 25,590$$

$$k_{c} \le c_{o} / t_{w} = 200,0 / 7,0 = 28,571$$

Przyjęto $k_c = 25,590$

Warunek dodatkowy:

$$k_c \le 20 \sqrt{\frac{215}{f_d}} = 20 \times \sqrt{\frac{215}{215}} = 20,000$$

Siła nie może zmieniać położenie na pręcie.

Naprężenia ściskające w środniku wynoszą $\sigma_c = 0,0$ MPa. Współczynnik redukcji nośności wynosi: $\eta_c = 1,000$

Nośność środnika na siłę skupioną:

 $P_{R,c} = k_c t_w^2 \eta_c f_d = 25,590 \times (7,0)^2 \times 1,000 \times 215 \times 10^{-3} = 269,6 \text{ kN}$ Warunek nośności środnika:

 $P = 139,9 < 269,6 = P_{R,c}$

Złożony stan środnika

xa = 6,250; xb = 5,750.

Siły przekrojowe przypadające na środnik i nośności środnika:

$N_{ m w}$	= 0,0	$N_{ m Rw}$	= 844,0	kN
$M_{ m w}$	= 129,4	$M_{ m Rw}$	= 150,6	kNm
V	= -27,2	V_{R}	= 427,7	kN
Р	= 0,0	$P_{\rm Rc}$	= 269,6	kN

Współczynnik niestateczności ścianki wynosi: $\varphi_p = 0,960$. Warunek nośności środnika:

$$\left(\frac{N_{w}}{N_{Rw}} + \frac{M_{W}}{M_{Rw}} + \frac{P}{P_{Rc}}\right)^{2} - 3\varphi_{P}\left(\frac{N_{w}}{N_{Rw}} + \frac{M_{W}}{M_{Rw}}\right)\frac{P}{P_{Rc}} + \left(\frac{V}{V_{R}}\right)^{2} =$$

INSTRUKCJA UŻYTKOWANIA MODUŁU

P-27

PRZYKŁADY

 $\left(\frac{0,0}{844,0} + \frac{129,4}{150,6} + \frac{0,0}{269,6}\right)^{2} - 3 \times 0,960 \times \left(\frac{0,0}{844,0} + \frac{129,4}{150,6}\right)\frac{0,0}{269,6} + \left(\frac{27,2}{427,7}\right)^{2} = 0,742 < 1$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą: $a_{max} = 33,9$ mm, $a_{gr} = l / 350 = 12000 / 350 = 34,3$ mm

 $a_{\text{max}} = 33,9 < 34,3 = a_{\text{gr}}$

Przykład 11

Temat: Ściskanie osiowe słupa z kątownika giętego.

- Żródło: Z. Boretti, W. Bogucki, S. Gajowniczek, W. Hryniewiecka, Przykłady obliczeń konstrukcji stalowych, ARKADY 1997. Przykład 3-6, str. 56.
- Uwagi: Przykład ten stanowi ilustrację wykorzystania modułu RM-STAL do wymiarowania prętów projektowanych z elementów giętych. Opcja Przekroje programu głównego umożliwia kreowanie tzw. przekroju składanego jednogałęziowego, co może być wykorzystane do modelowania dowolnego kształtownika giętego.

W poniższym przykładzie geometria rzeczywistego przekroju słupa (w formie kątownika trójgiętego $120 \times 120 \times 30 \times 3$) została przybliżona jednogałęziowym przekrojem uzyskanym przez odpowiednie złożenie dwóch kątowników $117 \times 30 \times 3$ deklarowanych przez użytkownika. Wielkości geometryczne (wysokość: h=2,50 m, współczynniki wyboczeniowe: $\mu_x = 1$, $\mu_y = 1$, $\mu_{\omega} = 0,5$), statyczne (siła osiowa N=61,2 kN) i materiałowe (stal St3SY) dla słupa przyjęto jak w cytowanym źródle.

klasy **2**.

Przekrój:

Wymiary przekroju: h=117,0 s=30,0 g=3,0 ex=4,3 ey=47,8. Charakterystyka geometryczna przekroju: Jxg=251,2 Jyg=74,7 A=8,64 ix=5,4 iy=2,9 Jw=478,5 Jt=0,3 xs=6,0 is=8,6 ry=-7,0 bx=9,5. Materiał: St3SY. Wytrzymałość fd=215 MPa dla g=3,0. Przekrój spełnia warunki przekroju

Siły przekrojowe:

xa = 0,000; xb = 2,500.

Obciążenia działające w płaszczyźnie układu: A

N = -61,2 kN,

Naprężenia w skrajnych włóknach: $\sigma_t = -70,8$ MPa $\sigma_c = -70,8$ MPa.

Długości wyboczeniowe pręta:

 przy wyboczeniu w płaszczyźnie układu przyjęto podatności węzłów ustalone wg załącznika 1 normy:

 χ_1 = 1,000, χ_2 = 1,000 węzły nieprzesuwne $\Rightarrow \mu$ = 1,000 dla l_o = 2,500 l_w = 1,000×2,500 = 2,500 m

- przy wyboczeniu w płaszczyźnie prostopadłej do płaszczyzny układu:

- $\chi_1 = 1,000, \chi_2 = 1,000$ węzły nieprzesuwne $\Rightarrow \mu = 1,000$ dla $l_o = 2,500$ $l_w = 1,000 \times 2,500 = 2,500$ m
- dla wyboczenia skrętnego przyjęto współczynnik długości wyboczeniowej $\mu_{\omega} = 0,500$. Rozstaw stężeń zabezpieczających przed obrotem $l_{\omega} = 2,500$ m. Długość wyboczeniowa $l_{\omega} = 1,250$ m.

Siły krytyczne:

$$N_{x} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 251,2}{2,500^{2}} 10^{-2} = 813,2 \text{ kN}$$

$$N_{y} = \frac{\pi^{2} EJ}{l_{w}^{2}} = \frac{3,14^{2} \times 205 \times 74,7}{2,500^{2}} 10^{-2} = 241,8 \text{ kN}$$

$$N_{z} = \frac{1}{i_{s}^{2}} \left(\frac{\pi^{2} EJ_{\overline{w}}}{l_{\overline{w}}^{2}} + GJ_{T}\right) = \frac{1}{8,6^{2}} \left(\frac{3,14^{2} \times 205 \times 478,5}{1,250^{2}} 10^{-2} + 80 \times 0,3 \times 10^{2}\right) = 115,9 \text{ kN}$$

$$N_{xz} = \frac{N_{x} + N_{z} - \sqrt{\left(N_{x} + N_{z}\right)^{2} - 4N_{x} N_{z}\left(1 - \mu y_{s}^{2} / is^{2}\right)}}{2\left(1 - \mu y_{s}^{2} / is^{2}\right)} = \frac{813,2 + 115,9 - \sqrt{\left(813,2 + 115,9\right)^{2} - 4 \times 813,2 \times 115,9 \times (1 - 0,707 \times 6,0^{2} / 8,6^{2})}}{2 \times (1 - 0,707 \times 6,0^{2} / 8,6^{2})} = 110,0 \text{ kN}$$

Nośność przekroju na ściskanie:

xa = 0,000; xb = 2,500.

 $N_{RC} = A f_d = 8,6 \times 215 \times 10^{-1} = 185,8 \text{ kN}$ Określenie współczynników wyboczeniowych: - dla Nx $\overline{\lambda} = 1,15 \sqrt{N_{RC} / N_x} = 1,15 \times \sqrt{185,8 / 813,2} = 0,552 \Rightarrow \varphi = 0,836$ - dla Ny $\overline{\lambda} = 1,15 \sqrt{N_{RC} / N_y} = 1,15 \times \sqrt{185,8 / 241,8} = 1,012 \Rightarrow \varphi = 0,554$ - dla Nxz $\overline{\lambda} = 1,15 \sqrt{N_{RC} / N_{xz}} = 1,15 \times \sqrt{185,8 / 110,0} = 1,494 \Rightarrow \varphi = 0,342$ Przyjęto: $\varphi = \varphi_{\min} = 0,342$ Warunek nośności pręta na ściskanie (39): $\frac{N}{\varphi N_{Rc}} = \frac{61,2}{0,342 \times 185,8} = 0,963 < 1$

Przykład wydruku tabelarycznego

W niniejszym rozdziale przedstawiono przykład wydruków tabelarycznych dla kratownicy o schemacie jak na rysunku poniżej.

Konstrukcję kratownicy stanowią pręty o różnych przekrojach poprzecznych w zależności od numerów prętów:

- pas górny (1-4) i dolny (5-8) przekrój jednogałęziowy w postaci 1/2 I 300,
- słupki (10-12) przekrój wielogałęziowy w postaci 2 x L 40x40x4,
- pozostałe pręty przekrój wielogałęziowy w postaci 2 x L 75x50x7.

Gałęzie przekrojów wielogałęziowych połączone są przewiązkami szerokości 100 mm, grubości 8 mm oraz w rozstawie 1/5 długości każdego pręta. Jako materiał przekrojów prętów przyjęto stal St0S.

Obciążenie kratownicy stanowią obciążenia ujęte w trzy schematy: obciążenie górnego pasa wywołujące jego zginanie; obciążenie poziome pręta 9 pochodzące od wiatru; obciążenie podwieszone do dźwigara.

Siły przekrojowe wyznaczone zostały dla teorii I-go rzędu dla obliczeniowych wartości obciążeń, natomiast przemieszczenia - dla wartości charakterystycznych.

Załączony wydruk został sporządzony poprzez dokonanie jego eksportu do schowka, a następnie zaimportowany w edytorze Word. Wydruk obejmuje tabele dotyczące wymiarowania prętów stalowych i zawiera tylko tabele tylko tych wy-ników, które mają znaczenie w przypadku kratownic.

RM-STAL

PRZYKŁADY

NOŚNOŚĆ Obciążeni	PRĘTÓW: a obl.:	Т	.I rzędu		
Przekój:	Pręt:	Warunek nośności:		Wykorz	ystanie:
1	1	Nośność przy ściskaniu ze	zgin	35,7%	
	2	Nosność przy ściskaniu ze	zgin zgin	65,4% 65,4%	
	4 5	Nośność przy ściskaniu ze Stan graniczny użytkowani	zgin a	35,2% 67,5%	
	6 7	Nośność na rozciąganie (3 Nośność na rozciąganie (3	2)	29,0% 24 4%	
	8	Nośność na rozciąganie (3	2)	24,4%	
2	10 11	Nośność na rozciąganie (3 Nośność na ściskanie (39)	2)	52,8% 37,1%	
	12 13	Nośność na rozciąganie (3 Nośność na ściskanie (39)	2)	52,8% 21,8%	
3	9 14	Nośność przy ściskaniu ze Nośność na ściskanie (39)	zgin	24,2% 82,6%	
	15 16	Nośność łączników Nośność łączników		35,4% 38,4%	
	17	Nośność na ściskanie (39)		82,3%	

STATECZNOŚĆ MIEJSCOWA: T.I rzędu

Obciążenia obl.: AB

Pręt:	к1:	Stan:	 ψο:	 ψx:	 ψy:	ΔMx:	Δму:	War.(9):
1	2							
2	2							
3	2							
4	2							
9	4	krytyczny	0,983	1,000	0,983			
11	4	krytyczny	0,945	0,945	1,000			
13	4	krytyczny	0,923	0,923	1,000			
14	4	krytyczny	0,946	1,000	0,946			
17	4	krytyczny	0,935	1,000	0,935			

NOŚNOŚĆ NA ZGINANIE (54): T.I rzędu

Obciążenia obl.: AB

Pręt	: x/L:	φL:	Mx:	Mrx:	My:	Mry:	N/Nr:	SW:
1 2 3 4 9	0,500 0,500 0,500 0,500 0,500 0,500	1,000 1,000 1,000 1,000 1,000	3,6 3,6 3,6 3,6 3,6 -0,6	10,3 10,3 10,3 10,3 3,2	0,0 0,0 0,0 0,0 0,0 0,0	5,9 5,9 5,9 5,9 5,9 2,7	0,004 0,263 0,263 0,000 0,043	0,354 0,613 0,613 0,350 0,236
ZGIN Obci	ANIE ZE ażenia o	ŚCINANI bl.: AB	EM (55):		T.I rzędi	u		
Pręt	: x/L:	Mx	: Mrvz	x:	My: N	Arvy:	N/Nr:	SW:

P-32

1									
	0,500	3,6	10,	3	0,0		5,9	0,004	0,35
2	0,500	3,6	10,	3	0,0		5,9	0,263	0,61
3	0,500	3,6	10,	3	0,0		5,9	0,263	0,61
4	0,500	3,6	10,	3	0,0		5,9	0,000	0,35
9	0,500	-0,б	3,	2	0,0		2,7	0,043	0,23
NOŚN Obcia	OŚĆ NA Ś ążenia ob	CINANIE: 1.: AB			T.I	rzędu			
 Pręt	: x/L:	vy:	Vry:	φνy:		Vx:	Vrx:	φvx:	SW:
1	0,000	-12,0	124,5	1,000		0,0	173,6	1,000	0,09
2	0 000	-12,0	124,5	1,000		0,0	173,6	1,000	0,09
2	0,000					~ ~	177 (1 000	0 00
∠ 3	0,000	-12,0	124,5	1,000		0,0	1/3,6	1,000	0,09
2 3 4 9	0,000 0,000 0,000	-12,0 -12,0 2,5	124,5 124,5 87.0	1,000 1,000 1,000		0,0 0,0 0,0	173,6 173,6 55,0	1,000 1,000 1,000	0,09
2 3 4 9	0,000 0,000 0,000 	-12,0 -12,0 2,5	124,5 124,5 87,0	1,000 1,000 1,000		0,0 0,0 0,0	173,6 173,6 55,0	1,000 1,000 1,000	0,09
2 3 4 9 	0,000 0,000 0,000 0,000	-12,0 -12,0 2,5	124,5 124,5 87,0	1,000 1,000 1,000		0,0 0,0 0,0	173,6 173,6 55,0	1,000 1,000 1,000	0,09 0,09 0,02
2 3 4 9 ŚCIN	0,000 0,000 0,000 ANIE Z S ażenia ob	-12,0 -12,0 2,5 IŁĄ OSIOW L.: AB	124,5 124,5 87,0 	1,000 1,000 1,000	 T.I	0,0 0,0 0,0 	173,6 173,6 55,0	1,000 1,000 1,000	0,09
2 3 4 9 ŚCIN Obcia Pręt	0,000 0,000 0,000 ANIE Z S ażenia ob : x/L:	-12,0 -12,0 2,5 IŁĄ OSIOW L.: AB 	124,5 124,5 87,0 A (56): Vyr,n	1,000 1,000 1,000 	T.I Vx:	0,0 0,0 rzędu Vxx	173,6 173,6 55,0	1,000 1,000 1,000 	0,09 0,09 0,02
2 3 4 9 SCIN Obcia Pręt 1	0,000 0,000 0,000 ANIE Z S ażenia ob 	-12,0 -12,0 2,5 IŁĄ OSIOW 1.: AB 	124,5 124,5 87,0 A (56): Vyr,n 124.	1,000 1,000 1,000 	T.I Vx: 0,0	0,0 0,0 0,0 rzędu Vxr	173,6 173,6 55,0 	1,000 1,000 1,000 	0,09 0,09 0,02
2 3 4 9 Sbcia Pręt 1 2	0,000 0,000 0,000 ANIE Z S ażenia ob 	-12,0 -12,0 2,5 IŁĄ OSIOW 1.: AB Vy: 12,0 12,0	124,5 124,5 87,0 A (56): Vyr,n -124, 120,	1,000 1,000 1,000 : 5 1	T.I Vx: 0,0 0,0	0,0 0,0 rzędu Vx: 1 1	1/3,6 173,6 55,0 r,n: 73,6 57,4	1,000 1,000 1,000 N/Nr: 0,006 0,265	0,09 0,02 SW: 0,09 0,10
2 3 4 9 Obcia Pręt 1 2 3	0,000 0,000 0,000 ANIE Z S ażenia ob : x/L: 1,000 1,000 1,000	-12,0 -12,0 2,5 IŁĄ OSIOW 1.: AB Vy: 12,0 12,0 12,0	124,5 124,5 87,0 A (56): Vyr,n -124, 120, 120,	1,000 1,000 1,000 : 5 1 1	T.I Vx: 0,0 0,0 0,0	0,0 0,0 Vxx 1' 10 10	173,6 173,6 55,0 r,n: 73,6 57,4 57,4	1,000 1,000 1,000 N/Nr: 0,006 0,265 0,265	0,09 0,02
2 3 4 9 Obcia Pręt 1 2 3 4	0,000 0,000 0,000 ANIE Z S ażenia ob : x/L: 1,000 1,000 1,000 0,000	-12,0 -12,0 2,5 IŁĄ OSIOW 1.: AB Vy: 12,0 12,0 12,0 -12,0	124,5 124,5 87,0 A (56): Vyr,n 124, 120, 120, 124,	1,000 1,000 1,000 : 5 1 1 5	T.I Vx: 0,0 0,0 0,0 0,0	0,0 0,0 	173,6 173,6 55,0 	1,000 1,000 1,000 N/Nr: 0,006 0,265 0,265 0,002	0,09 0,02 0,02

Pręt:		A[cm2]:	Aψ[cm2]:	N[kN]:	Nrt[kN]:	SW:
1	Zam.mimośrod.	34,50	25,65	-3,5	423,2	0,008
2	Zam.mimośrod.	34,50	25,65	-150,7	423,2	0,356
3	Zam.mimośrod.	34,50	25,65	-150,7	423,2	0,356
4	Zam.mimośrod.	34,50	25,65	1,0	423,2	0,002
5	Zam.mimośrod.	34,50	25,65	122,9	525,8	0,234
6	Zam.mimośrod.	34,50	25,65	122,9	423,2	0,290
7	Zam.mimośrod.	34,50	25,65	103,1	423,2	0,244
8	Zam.mimośrod.	34,50	25,65	103,1	423,2	0,244
9	Zam.mimośrod.	16,62	15,55	-12,2	272,2	0,045
10	Zam.mimośrod.	6,16	5,42	50,0	94,8	0,528
11	Zam.mimośrod.	6,16	5,42	-24,1	94,8	0,254
12	Zam.mimośrod.	6,16	5,42	50,0	94,8	0,528
13	Zam.mimośrod.	6,16	5,42	-12,0	94,8	0,127
14	Zam.mimośrod.	16,62	15,55	-163,4	272,2	0,600
15	Zam.mimośrod.	16,62	15,55	35,6	272,2	0,131
16	Zam.mimośrod.	16,62	15,55	68,0	272,2	0,250
17	Zam.mimośrod.	16,62	15,55	-151,9	272,2	0,558

NOŚNOŚĆ NA ŚCISKANIE (39): T.I rzędu Obciążenia obl.: AB

_____ _____ _____

INSTRUKCJA UŻYTKOWANIA MODUŁU

P-33

M-STAI	L											5703
Pręt:	lwx:	lwy	7:	$\overline{\lambda}$:		φ:	ψ:		N[kN	1]:]	Nrc[kN]:	SW:
 1	1,204	1.20)4 r	.552	0	836	 1,00	0	 - 3	. 5	569.3	
2	1,204	1.20)4 r	,552	0	836	1,00	0	-150	.7	569.3	0.31
3	1,204	1.20)4 r	,552	n,	836	_,00 1,00	0	-150,	.7	569 3	0,31
4	1,204	1,20)4 r	,552	۰, ۵	836	1,00	0	- 30,	0	569 3	0,001
9	1 000	1 00		455	۰, ۱	890	n 98	3	_12	2	285 9	0,002
11	1 200	1 20)0 0 10 C	869	۰, ۱	638	0,90 n 94	5	_24	1	101 9	0,010
12	1 400	1 10	10 1	011	0,	554	0,24	2	10	0	101,5	0,37
11	1 628	1 60	7 Q(740	0,	710	0,92 0 0/	6	-163	, О Л	275 1	0,210
17	1,769	1,02	59 0	,804	0,	679	0,94	5	-151,	.9	271,9	0,82
				λ	. –	mia	roda	jna s	smukł	ość	względna	a (λ/λp)
ŚCISKA Obciążo	NIE ZE enia obl	ZGINA .: AB	NIEM	(58):	:		T.I	rzęd	u			
 Pręt:	nx:	 ny	· /:	 φL:		 mx:		my:		 \x:	 Δy:	 SW:
 1	0,003	 0.0)03 1	.000		0,35	 0	0,00	0 0	.000	0,000	0.35
2	0,272	0.3	300 1	,000		0,35	0	0,00	0 0	009	0,000	0.654
3	0.272	0.3	300 1	,000		0.35	0	0.00	0 0	009	0,000	0.654
4	0,002	0.0)02 1	,000		0.35	0	0,00	0 0	000	0,000	0.35
9	0.048	0.0)46 1	,000		0.19	3	0.00	- 0, 0 0	002	0,000	0.24
OSŁABI Obciążo	IENIA O'I enia obl	WORAN	4 I:				т.і	rzęd	u 			
OSŁABI Obciążo Pręt:	I ENIA OI enia obl Ao:	ιworam .: Ab 	1Ι: ψνγ:	 Ψv	 x:	σ e/	T.I fd:1	rzęd ty/fd	u t :τ x/	fdt	 : σr/fd:	 SW:
DSLABI Obciażo Pręt: 1	EENIA OI enia obl Ao: 0,00 1	ΓWORAL .: AB 	4Ι: Ψvy: 1,000	ψv 1,00	 x: 	σe/ 0,3	T.I fd:1 45	rzęd ty/fd 0,00	u t:τx/ 0 0,	fdt 000	: σ r/fd: 0,345	SW:
DSLABI Dbciażo Pręt: 1 2	EENIA OI enia obl Ao: 0,00 1 0,00 1	τworan .: AB ψο: .,000	4I: Ψvy: 1,000 1,000	ψv 1,00	x: 00	σe/ 0,3 0,3	T.I fd:1 45 88	rzęd ty/fd 0,00 0,00	u t:tx/ 0 0, 0 0,	fdt 000	: σ r/fd: 0,345 0,388	SW: 0,349 0,388
DSŁABI Dbciażo Pręt: 1 2 3	ENIA OI enia obl Ao: 0,00 1 0,00 1 0,00 1 0,00 1	τworat .: AB ψο: .,000 .,000	4I: ψvy: 1,000 1,000 1,000	ψv 1,00 1,00	x: 00	σe/ 0,3 0,3 0,3	T.I fd:1 45 88 88	rzęd ty/fd 0,00 0,00	u t:τx/ 0 0, 0 0,	fdt 000	: σr/fd: 0,345 0,388 0,388	SW: 0,349 0,388 0,388
DSŁABI Dbciażo Pręt: 1 2 3 4	ENIA OI enia obl Ao: 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1	ΨΟΡΑΙ .: AB ΨΟ: 	4I: ΨVVY ³ 1,000 1,000 1,000	ψν 1,00 1,00 1,00 1,00	x:	σe/ 0,3 0,3 0,3 0,3	T.I fd:1 45 88 88 50	rzęd Cy/fd 0,00 0,00 0,00	u t:tx/ 0 0, 0 0, 0 0,	fdt 000 000 000	: σr/fd: 0,345 0,388 0,388 0,388 0,350	SW: 0,349 0,388 0,388 0,388 0,388
DSLABI Dbciążo Pręt: 1 2 3 4 5	Ao: 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1	τworan .: AB ψο: .,000 ,000 ,000 ,000	4I: Ψvy: 1,000 1,000 1,000 1,000	1,00 1,00 1,00 1,00	x:)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,3 0,3	T.I fd:1 45 88 88 50 74	rzęd Cy/fd 0,00 0,00 0,00 0,00 0,00	u t:tx/ 0 0, 0 0, 0 0, 0 0,	fdt 000 000 000	: σr/fd: 0,345 0,388 0,388 0,350 0,174	SW: 0,349 0,388 0,388 0,388 0,350 0,174
DSLABI Dbciążo Pręt: 1 2 3 4 5 6	Ao: 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1	CWORAN .: AB ψο: 	4I: Ψvy: 1,000 1,000 1,000 1,000 1,000 1,000	<pre></pre>	x:)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,3 0,3 0,1 0,2	T.I fd:1 45 88 88 50 74 16	rzęd Ty/fd 0,00 0,00 0,00 0,00 0,00 0,00 0,00	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0,	fdt 000 000 000 000 000	: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216	SW: 0,349 0,388 0,388 0,350 0,174 0,216
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7	LENIA OI enia obl Ao: 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1	ΓWORAN .: AB Ψο: 	<pre> 4I:</pre>	ψν 1,00 1,00 1,00 1,00 1,00 1,00 1,00	x:)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,3 0,1 0,2 0,1	T.I fd:1 45 88 88 50 74 16 81	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0,	fdt 000 000 000 000 000 000	: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181	SW: 0,345 0,388 0,388 0,350 0,174 0,216 0,183
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8	LENIA OI enia obl Ao: 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1	ΓWORAN .: AB Ψο: 	<pre>4I:</pre>	ψν 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	x:)0)0)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,3 0,3 0,1 0,2 0,1	T.I fd:1 45 88 88 50 74 16 81 81	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000	: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,182 0,183
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9	LENIA OI enia obl Ao: 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1 0,00 1	ΓWORAN .: AB Ψο: 	<pre>4I:</pre>	ψν 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	x:)0)0)0)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,3 0,1 0,2 0,1 0,1	T.I fd:1 45 88 88 50 74 16 81 81 51	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000 000	<pre>cor/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10	Ao: Ao: 0,00 1 0,00 1	ΓWORAN .: AB Ψο: L,000	<pre>4I:</pre>	ψν 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	x:)0)0)0)0)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1	T.I fd:1 45 88 88 50 74 16 81 81 51 64	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000 000 000	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11	IENIA OI enia obl Ao: 0,00 1	ΓWORAN .: AB Ψο: L,000	<pre>4I:</pre>	ψν 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	x:)0)0)0)0)0)0)0)0)0)0)0)0)0	σe/ 0,33 0,33 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1	T.I fd:1 45 88 88 50 74 16 81 81 51 64 23	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000 000 000 0	<pre>cor/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,223</pre>	SW: 0,349 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12	IENIA OI enia obl Ao: 0,00 1	ΓWORAN .: AB ΨΟ: L,000	<pre>4I:</pre>	ψν 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	x:)0)0)0)0)0)0)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,4 0,2 0,4	T.I fd:1 45 88 88 50 74 16 81 51 64 23 64 23 64	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000 000 000 0	<pre>cor/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,223 0,464</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,184 0,223 0,464
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13	LENIA OI enia obl Ao: 0,00 1	FWORAN .: AB 	<pre> 4I:</pre>	<pre></pre>	x: 00 00 00 00 00 00 00 00 00 0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,4 0,2 0,4 0,1	T.I fd:1 45 88 88 50 74 16 81 51 64 23 64 12	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000 000 000 0	<pre>cor/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,181 0,151 0,464 0,223 0,464 0,112</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,184 0,223 0,464 0,212
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14	LENIA OI enia obl Ao: 0,00 1	FWORAN .: AB 	<pre> 4I:</pre>	<pre></pre>	x: 00 00 00 00 00 00 00 00 00 0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,4 0,4 0,2 0,4 0,5	T.I fd:1 45 88 88 50 74 16 81 51 64 23 64 12 62	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0	fdt 000 000 000 000 000 000 000 000 000 0	<pre>cor/fd: 0,345 0,388 0,350 0,174 0,216 0,181 0,181 0,181 0,151 0,464 0,223 0,464 0,112 0,562</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,223 0,464 0,112 0,562
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	LENIA OI enia obl Ao: 0,00 1	EWORAN .: AB 	<pre>4I:</pre>	<pre></pre>	x: 00 00 00 00 00 00 00 00 00 0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,4 0,1 0,4 0,1 0,5 0,1	T.I fd:1 45 88 80 74 16 81 51 64 23 64 12 62 23	rzęd Cy/fd 0,000 0,00	u t:tx/ 0 0, 0 0, 0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,223 0,464 0,112 0,562 0,123</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,223 0,464 0,212 0,464 0,112 0,562 0,123
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	LENIA OI enia obl Ao: 0,00 1	FWORAN .: AB 	<pre>4I:</pre>	<pre></pre>	x: 00 00 00 00 00 00 00 00 00 0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,4 0,1 0,4 0,1 0,5 0,1 0,2	T.I fd:1 45 88 80 74 16 81 51 64 23 64 12 62 23 34	rzęd Cy/fd 0,000 0,00	u t:tx/ 0 0, 0 0, 0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,223 0,464 0,112 0,562 0,123 0,234</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,183 0,223 0,464 0,112 0,562 0,123
DSLABI Dbciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	IENIA OI enia obl Ao: 0,00 1	ΓWORAN .: AB .: AB 	<pre>4I:</pre>	<pre></pre>	x: 00 00 00 00 00 00 00 00 00 0	σe/ 0,3 0,3 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	T.I fd:1 45 88 50 74 16 81 51 64 23 64 12 62 34 22 	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0,0,0 0,0,0,0 0,0,0 0,0,0,0 0,0,0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,151 0,464 0,151 0,464 0,112 0,562 0,123 0,234 0,522</pre>	SW: 0,349 0,388 0,388 0,350 0,174 0,216 0,183 0,123 0,234 0,123 0,234 0,123 0,2340 0,2340 0,2340000000000000000000
OSLABI Obciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 	IENIA OI enia obl Ao: 0,00 1	EWORAN .: AB AB OO 	<pre>4I:</pre>	<pre></pre>	x: 00 00 00 00 00 00 00 00 00 0	σe/ 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	T.I fd:1 45 88 88 50 74 16 81 51 64 23 64 12 62 23 34 22 rzch	rzęd 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	u t:tx/ 0 0, 0 0, 0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,223 0,464 0,112 0,562 0,123 0,234 0,522 fdt=0,</pre>	SW: 0,349 0,388 0,386 0,350 0,174 0,216 0,183 0,123 0,183 0,123 0,562 0,123 0,234 0,52200 0,5220 0,5220 0,5220 0,5220 0,5220 0,5220000000000
OSLABI Obciažo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 	IENIA OI enia obl Ao: 0,00 1 0,00	Important AB AB	<pre>4I:</pre>	<pre></pre>	 x:)0)0)0)0)0)0)0)0)0)0)0)0)0	σe/ 0,3 0,3 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	T.I fd:1 45 88 50 74 16 81 51 64 23 64 12 62 23 34 22 rzch T.I	rzęd 0,001 0,00000000	u t:tx/ 0 0, 0 0, 0,0,0,0 0,0,0,0,0,0 0,0,0,0,0,0,0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,151 0,164 0,151 0,464 0,151 0,464 0,112 0,562 0,123 0,234 0,522 </pre>	SW: 0,34! 0,388 0,386 0,350 0,174 0,216 0,183 0,562 0,183 0,56200000000000000000000000000000000000
OSLABI Obciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 NOŚNOŚ	IENIA OI enia obl Ao: 0,00 1 0,00	FWORAN .: AB ψo: L,000 L,000 </td <td><pre>4I:</pre></td> <td><pre></pre></td> <td> x: </td> <td>σe/ 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,4 0,1 0,4 0,1 0,5 0,1 0,5 0,1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5</td> <td>T.I fd:1 45 88 88 50 74 16 81 51 64 23 64 12 62 23 34 22 T.I </td> <td>rzęd 0,000000</td> <td>u t:tx/ 0 0, 0 0, 0,</td> <td>fdt 000 000 000 000 000 000 000 000 000 0</td> <td><pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,151 0,464 0,112 0,562 0,123 0,464 0,562 0,123 0,562 0,123 0,522 </pre></td> <td>SW: 0,34! 0,38! 0,38! 0,38! 0,350 0,172 0,216 0,18: 0,18: 0,15: 0,462 0,12: 0,462 0,12: 0,462 0,12: 0,462 0,12: 0,52: 58*fd</td>	<pre>4I:</pre>	<pre></pre>	 x: 	σe/ 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,1 0,2 0,1 0,1 0,4 0,1 0,4 0,1 0,5 0,1 0,5 0,1 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	T.I fd:1 45 88 88 50 74 16 81 51 64 23 64 12 62 23 34 22 T.I 	rzęd 0,000000	u t:tx/ 0 0, 0 0, 0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,151 0,464 0,112 0,562 0,123 0,464 0,562 0,123 0,562 0,123 0,522 </pre>	SW: 0,34! 0,38! 0,38! 0,38! 0,350 0,172 0,216 0,18: 0,18: 0,15: 0,462 0,12: 0,462 0,12: 0,462 0,12: 0,462 0,12: 0,52: 58*fd
OSLABI Obciażo Pręt: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 NOŚNOŚ Obciażo Pręt: Pręt:	IENIA OI enia obl Ao: 0,00 1 0,00	FWORAN .: AB ψ0: L,000	<pre>4I:</pre>	<pre></pre>	 x: 00 00 00 00 00 00 00 00	σe/ 0,3 0,3 0,3 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	T.I fd:1 45 88 50 74 16 81 51 64 23 64 12 62 23 34 22 T.I 9	rzęd 0,000000	u t:tx/ 0 0, 0 0, 0,	fdt 000 000 000 000 000 000 000 000 000 0	<pre>: σr/fd: 0,345 0,388 0,388 0,350 0,174 0,216 0,181 0,181 0,151 0,464 0,223 0,464 0,112 0,562 0,123 0,234 0,522 </pre>	SW: 0,34! 0,38! 0,38! 0,38! 0,350 0,172 0,216 0,18: 0,18: 0,18: 0,18: 0,18: 0,18: 0,18: 0,18: 0,12: 0,21: 0,22: 0,22: 0,22: 0,52: 58*fd

CADSIS			PRZYKŁADY		RM-STAI		
11 12	1,3 1,3	0,2 0,2	2,9 2,9	7,8 8,4	89,8 89,8	0,086 0,094	
13	1,3	0,2	2,9	9,0	89,8	0,101	
14	3,5	0,6	2,9	31,7	89,8	0,354	
15	3,5	0,6	2,9	31,7	89,8	0,354	
16	3,5	0,6	2,9	34,5	89,8	0,384	
17	3,5	0,6	2,9	34,5	89,8	0,384	

STAN GRANICZNY UŻYTKOWANIA: T.I rzędu

Obciążenia char.: AB

Pręt:	Rodzaj:	Ogranicz.:	L(H*):	agr[mm]:	a[mm]:	SM:
1	Uqiecie Y	L/350	1204,2	 3,4	0,4	0,112
2	Ugiecie Y	L/350	1204,2	3,4	0,4	0,112
3	Ugiecie Y	L/350	1204,2	3,4	0,4	0,112
4	Ugięcie Y	L/350	1204,2	3,4	0,4	0,112
5	Ugięcie Y	L/350	1200,0	3,4	2,3	0,675
6	Ugięcie Y	L/350	1200,0	3,4	0,0	0,000
7	Ugięcie Y	L/350	1200,0	3,4	0,0	0,000
8	Ugięcie Y	L/350	1200,0	3,4	0,0	0,000
9	Ugięcie Y	L/350	1000,0	2,9	0,3	0,120
10	Ugięcie X	L/350	1100,0	3,1	0,0	0,000
11	Ugięcie X	L/350	1200,0	3,4	0,0	0,000
12	Ugięcie X	L/350	1300,0	3,7	0,0	0,000
13	Ugięcie X	L/350	1400,0	4,0	0,0	0,000
14	Ugięcie Y	L/350	1627,9	4,7	0,0	0,000
15	Ugięcie Y	L/350	1627,9	4,7	0,0	0,000
16	Ugięcie Y	L/350	1769,2	5,1	0,0	0,000
17	Ugięcie Y	L/350	1769,2	5,1	0,0	0,000

*) H - wysokość poziomu węzła

T.I rzędu

DŁUGOŚCI WYBOCZENIOWE:

Obciążenia obl.: AB

_____ _____ Pręt: μx : μy : $\mu \omega$: Lox: Loy: Lo ω : λx : λy : 11,0001,0001,0001,2041,2041,20426,9147,1521,0001,0001,0001,2041,2041,20426,9147,1531,0001,0001,0001,2041,2041,20426,9147,1541,0001,0001,0001,2041,2041,20426,9147,1541,0001,0001,0001,2041,2041,20426,9147,15 1,000 1,000 1,000 1,200 1,200 1,200 26,81 46,99 5 б 1,000 1,000 1,000 1,200 1,200 1,200 26,81 46,99 7 1,000 1,000 1,000 1,200 1,200 1,200 26,81 46,99 1,000 1,000 1,000 8 1,200 1,200 1,200 26,81 46,99 1,000 1,000 1,000 1,000 1,000 1,000 42,32 9 43,92 1,100 10 1,000 1,000 1,000 1,100 1,100 50,64 74,17 1,000 80,91 55,24 11 1,000 1,000 1,200 1,200 1,200 1,300 1,300 1,300 59,84 1,000 1,000 87,65 1,000 12 64,44 13 1,000 1,000 1,000 1,400 1,400 1,400 94,39 1,000 1,000 1,000 1,628 1,628 1,628 68,90 71,49 14 15 1,000 1,000 1,000 1,628 1,628 1,628 68,89 71,49 1,000 1,000 1,000 1,769 1,769 1,769 74,87 77,70 16 17 1,000 1,000 1,000 1,769 1,769 1,769 74,86 77,70

P-35